1,528 research outputs found

    Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution

    Get PDF
    BACKGROUND: The pulse oximeter, a medical device capable of measuring blood oxygen saturation (SpO2), has been shown to be a valuable device for monitoring patients in critical conditions. In order to incorporate the technique into a wearable device which can be used in ambulatory settings, the influence of motion artifacts on the estimated SpO2 must be reduced. This study investigates the use of the smoothed psuedo Wigner-Ville distribution (SPWVD) for the reduction of motion artifacts affecting pulse oximetry. METHODS: The SPWVD approach is compared with two techniques currently used in this field, i.e. the weighted moving average (WMA) and the fast Fourier transform (FFT) approaches. SpO2 and pulse rate were estimated from a photoplethysmographic (PPG) signal recorded when subject is in a resting position as well as in the act of performing four types of motions: horizontal and vertical movements of the hand, and bending and pressing motions of the finger. For each condition, 24 sets of PPG signals collected from 6 subjects, each of 30 seconds, were studied with reference to the PPG signal recorded simultaneously from the subject's other hand, which was stationary at all times. RESULTS AND DISCUSSION: The SPWVD approach shows significant improvement (p < 0.05), as compared to traditional approaches, when subjects bend their finger or press their finger against the sensor. In addition, the SPWVD approach also reduces the mean absolute pulse rate error significantly (p < 0.05) from 16.4 bpm and 11.2 bpm for the WMA and FFT approaches, respectively, to 5.62 bpm. CONCLUSION: The results suggested that the SPWVD approach could potentially be used to reduce motion artifact on wearable pulse oximeters

    Postsynthetic Functionalization of DNA‐Nanocomposites with Proteins Yields Bioinstructive Matrices for Cell Culture Applications

    Get PDF
    We report on the directed postsynthetic functionalization of soft DNA nanocomposite materials with proteins. Using the example of the functionalization of silica nanoparticle‐modified DNA polymer materials with agonists or antagonists of the epidermal growth factor receptor EGFR cell membrane receptor, we demonstrate that hierarchically structured interfaces to living cells can be established. Owing to the modular design principle, even complex DNA nanostructures can be integrated into the materials, thereby enabling the high‐precision arrangement of ligands on the lower nanometer length scale. We believe that such complex biohybrid material systems can be used for new applications in biotechnology

    Radiation-induced lymphopenia does not impact treatment efficacy in a mouse tumor model

    Full text link
    Radiation-induced lymphopenia is a common occurrence in radiation oncology and an established negative prognostic factor, however the mechanisms underlying the relationship between lymphopenia and inferior survival remain elusive. The relevance of lymphocyte co-irradiation as critical normal tissue component at risk is an emerging topic of high clinical relevance, even more so in the context of potentially synergistic radiotherapy-immunotherapy combinations. The impact of the radiotherapy treatment volume on the lymphocytes of healthy and tumor-bearing mice was investigated in a novel mouse model of radiation-induced lymphopenia. Using an image-guided small-animal radiotherapy treatment platform, translationally relevant tumor-oriented volumes of irradiation with an anatomically defined increasing amount of normal tissue were irradiated, with a focus on the circulating blood and lymph nodes. In healthy mice, the influence of irradiation with increasing radiotherapy treatment volumes was quantified on the level of circulating blood cells and in the spleen. A significant decrease in the lymphocytes was observed in response to irradiation, including the minimally irradiated putative tumor area. The extent of lymphopenia correlated with the increasing volumes of irradiation. In tumor-bearing mice, differential radiotherapy treatment volumes did not influence the overall therapeutic response to radiotherapy alone. Intriguingly, an improved treatment efficacy in mice treated with draining-lymph node co-irradiation was observed in combination with an immune checkpoint inhibitor. Taken together, our study reveals compelling data on the importance of radiotherapy treatment volume in the context of lymphocytes as critical components of normal tissue co-irradiation and highlights emerging challenges at the interface of radiotherapy and immunotherapy. Keywords: Image-guided small animal radiotherapy platform; Lymphopenia; Normal tissue injury; Radioimmunotherapy; Radiotherap

    Simulation Perspectives of Sub-1V Single-Supply Z2-FET 1T-DRAM Cells for Low-Power

    Get PDF
    With the upcoming Internet of Things (IoT), low-power devices are becoming mainstream these days. The need for memory elements able to operate at reduced biasing conditions is therefore of utmost importance. In this paper, one of the most promising capacitor-less dynamic RAM cell, the Z2-FET (zero subthreshold swings, zero impact ionization field-effect transistor), is analyzed through advanced numerical simulations to study its sub-1V operation capabilities. SiGe compounds and tuned workfunction are selected to further reduce the operating voltage to limit energy consumption. The results demonstrate functional SiGe cells with up to 75% energy reduction with respect to identical Si cells.This work was supported in part by the H2020 REMINDER European under Grant 687931, and in part by the Spanish under Project TEC2017-89800-R and Project IJCI-2016-27711

    Extraction of phenolic antioxidants from four selected seaweeds obtained from Sabah

    Get PDF
    Algal have attracted attention from biomedical scientists as they are a valuable natural source of secondary metabolites that exhibit antioxidant activities. In this study, single-factor experiments were conducted to investigate the best extraction conditions (ethanol concentration, solid-to-solvent ratio, extraction temperature and extraction time) in extracting antioxidant compounds and capacities from four species of seaweeds (Sargassum polycystum, Eucheuma denticulatum, Kappaphycus alvarezzi variance Buaya and Kappaphycus alvarezzi variance Giant) from Sabah. Total phenolic content (TPC) and total flavonoid content (TFC) assays were used to determine the phenolic and flavonoid concentrations, respectively, while 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picylhydrazyl (DPPH) radical scavenging capacity assays were used to evaluate the antioxidant capacities of all seaweed extracts. Results showed that extraction parameters had significant effect (p < 0.05) on the antioxidant compounds and antioxidant capacities of seaweed. Sargassum polycystum portrayed the most antioxidant compounds (37.41 ± 0.01 mg GAE/g DW and 4.54 ± 0.02 mg CE/g DW) and capacities (2.00 ± 0.01 μmol TEAC/g DW and 0.84 ± 0.01 μmol TEAC/g DW) amongst four species of seaweed

    Major Differences in Transcriptional Alterations in Dorsal Root Ganglia Between Spinal Cord Injury and Peripheral Neuropathic Pain Models

    Get PDF
    Chronic, often intractable, pain is caused by neuropathic conditions such as traumatic peripheral nerve injury (PNI) and spinal cord injury (SCI). These conditions are associated with alterations in gene and protein expression correlated with functional changes in somatosensory neurons having cell bodies in dorsal root ganglia (DRGs). Most studies of DRG transcriptional alterations have utilized PNI models where axotomy-induced changes important for neural regeneration may overshadow changes that drive neuropathic pain. Both PNI and SCI produce DRG neuron hyperexcitability linked to pain, but contusive SCI produces little peripheral axotomy or peripheral nerve inflammation. Thus, comparison of transcriptional signatures of DRGs across PNI and SCI models may highlight pain-associated transcriptional alterations in sensory ganglia that do not depend on peripheral axotomy or associated effects such as peripheral Wallerian degeneration. Data from our rat thoracic SCI experiments were combined with meta-analysis of published whole-DRG RNA-seq datasets from prominent rat PNI models. Striking differences were found between transcriptional responses to PNI and SCI, especially in regeneration-associated genes (RAGs) and long noncoding RNAs (lncRNAs). Many transcriptomic changes after SCI also were found after corresponding sham surgery, indicating they were caused by injury to surrounding tissue, including bone and muscle, rather than to the spinal cord itself. Another unexpected finding was of few transcriptomic similarities between rat neuropathic pain models and the only reported transcriptional analysis of human DRGs linked to neuropathic pain. These findings show that DRGs exhibit complex transcriptional responses to central and peripheral neural injury and associated tissue damage. Although only a few genes in DRG cells exhibited similar changes in expression across all the painful conditions examined here, these genes may represent a core set whose transcription in various DRG cell types is sensitive to significant bodily injury, and which may play a fundamental role in promoting neuropathic pain
    corecore