418 research outputs found

    EMPLOYER SIZE, HUMAN CAPITAL, AND RURAL WAGES: IMPLICATIONS FOR SOUTHERN RURAL DEVELOPMENT

    Get PDF
    A recent trend in rural development policy emphasizes small business development in place of industrial recruitment. To analyze some of the likely effects of expanding the proportion of small firms in local economies, an empirical wage rate model incorporating employer size was developed, and parameters were estimated using household date from rural Putnam County, Georgia. The estimates indicated that large employers offered higher wages than small employers and that the wage premium they offered was greater for blacks than for whites. These results support Thomas Till's argument that southern rural counties with relatively large black populations should not abandon efforts to attract large employers. Other factors associated with higher wages included level of education, previous labor force experience, and employment in certain occupations and industries.Community/Rural/Urban Development, Labor and Human Capital,

    Method and system for providing autonomous control of a platform

    Get PDF
    The present application provides a system for enabling instrument placement from distances on the order of five meters, for example, and increases accuracy of the instrument placement relative to visually-specified targets. The system provides precision control of a mobile base of a rover and onboard manipulators (e.g., robotic arms) relative to a visually-specified target using one or more sets of cameras. The system automatically compensates for wheel slippage and kinematic inaccuracy ensuring accurate placement (on the order of 2 mm, for example) of the instrument relative to the target. The system provides the ability for autonomous instrument placement by controlling both the base of the rover and the onboard manipulator using a single set of cameras. To extend the distance from which the placement can be completed to nearly five meters, target information may be transferred from navigation cameras (used for long-range) to front hazard cameras (used for positioning the manipulator)

    Mobile camera-space manipulation

    Get PDF
    The invention is a method of using computer vision to control systems consisting of a combination of holonomic and nonholonomic degrees of freedom such as a wheeled rover equipped with a robotic arm, a forklift, and earth-moving equipment such as a backhoe or a front-loader. Using vision sensors mounted on the mobile system and the manipulator, the system establishes a relationship between the internal joint configuration of the holonomic degrees of freedom of the manipulator and the appearance of features on the manipulator in the reference frames of the vision sensors. Then, the system, perhaps with the assistance of an operator, identifies the locations of the target object in the reference frames of the vision sensors. Using this target information, along with the relationship described above, the system determines a suitable trajectory for the nonholonomic degrees of freedom of the base to follow towards the target object. The system also determines a suitable pose or series of poses for the holonomic degrees of freedom of the manipulator. With additional visual samples, the system automatically updates the trajectory and final pose of the manipulator so as to allow for greater precision in the overall final position of the system

    Taxonomic Work as Information Work: Design for Semantic Refactoring

    Get PDF
    Taxonomy is the branch of science concerned with classi- fying organisms: drawing the line between cats and dogs, fish and fowl, animals and vegetables. Modern taxonomic work is built on a hundreds-year-old tradition of qualitative research and description. There are aspects of this work that illustrate the pervasiveness and difficulty of a particular kind of qualitative data wrangling, which we call semantic refactoring: the review, normalization, and re-engineering of semantic structures. Because taxonomic work is con- ducted over long time spans, the processes underlying se- mantic refactoring become more visible. An examination of taxonomic data practices may inform our understanding of how (and if) collections of qualitative data scale, particularly when collaboratively created.NSF ABI Grant 1356515.Ope

    Frozen Chemistry Effects on Nozzle Performance Simulations

    Get PDF
    Simulations of exhaust nozzle flows are typically conducted assuming the gas is calorically perfect, and typically modeled as air. However the gas inside a real nozzle is generally composed of combustion products whose thermodynamic properties may differ. In this study, the effect of gas model assumption on exhaust nozzle simulations is examined. The three methods considered model the nozzle exhaust gas as calorically perfect air, a calorically perfect exhaust gas mixture, and a frozen exhaust gas mixture. In the latter case the individual non-reacting species are tracked and modeled as a gas which is only thermally perfect. Performance parameters such as mass flow rate, gross thrust, and thrust coefficient are compared as are mean flow and turbulence profiles in the jet plume region. Nozzles which operate at low temperatures or have low subsonic exit Mach numbers experience relatively minor temperature variations inside the nozzle, and may be modeled as a calorically perfect gas. In those which operate at the opposite extreme conditions, variations in the thermodynamic properties can lead to different expansion behavior within the nozzle. Modeling these cases as a perfect exhaust gas flow rather than air captures much of the flow features of the frozen chemistry simulations. Use of the exhaust gas reduces the nozzle mass flow rate, but has little effect on the gross thrust. When reporting nozzle thrust coefficient results, however, it is important to use the appropriate gas model assumptions to compute the ideal exit velocity. Otherwise the values obtained may be an overly optimistic estimate of nozzle performance

    Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells

    Get PDF
    Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the electrochromic device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (μ-cells) that are i) small enough to be visually transparent to the eye, and ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si μ-cells are arranged in high pitch (i.e. low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance). Additionally, the thin dimensions of these Si μ-cells enable fabrication on flexible substrates to realize these flexible PEC devices. The current work demonstrates this concept using WO₃ as the EC material and V₂O₅ as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 seconds, with a modulation in transmission as high as 33%. Integration with two Si μ-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 minutes, and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio

    The Oak Ridge Polycystic Kidney mouse: Modeling ciliopathies of mice and men

    Get PDF
    The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88(Tg737Rpw)). The Ift88(Tg737Rp omega) mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can be analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle

    Human platelet lysate improves human cord blood derived ECFC survival and vasculogenesis in three dimensional (3D) collagen matrices

    Get PDF
    Human cord blood (CB) is enriched in circulating endothelial colony forming cells (ECFCs) that display high proliferative potential and in vivo vessel forming ability. Since diminished ECFC survival is known to dampen the vasculogenic response in vivo, we tested how long implanted ECFC survive and generate vessels in three-dimensional (3D) type I collagen matrices in vitro and in vivo. We hypothesized that human platelet lysate (HPL) would promote cell survival and enhance vasculogenesis in the 3D collagen matrices. We report that the percentage of ECFC co-cultured with HPL that were alive was significantly enhanced on days 1 and 3 post-matrix formation, compared to ECFC alone containing matrices. Also, co-culture of ECFC with HPL displayed significantly more vasculogenic activity compared to ECFC alone and expressed significantly more pro-survival molecules (pAkt, p-Bad and Bcl-xL) in the 3D collagen matrices in vitro. Treatment with Akt1 inhibitor (A-674563), Akt2 inhibitor (CCT128930) and Bcl-xL inhibitor (ABT-263/Navitoclax) significantly decreased the cell survival and vasculogenesis of ECFC co-cultured with or without HPL and implicated activation of the Akt1 pathway as the critical mediator of the HPL effect on ECFC in vitro. A significantly greater average vessel number and total vascular area of human CD31(+) vessels were present in implants containing ECFC and HPL, compared to the ECFC alone implants in vivo. We conclude that implantation of ECFC with HPL in vivo promotes vasculogenesis and augments blood vessel formation via diminishing apoptosis of the implanted ECFC

    Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications

    Get PDF
    Recent developments in automated optical sectioning microscope systems have enabled researchers to conduct high resolution, three-dimensional (3D) microscopy at the scale of millimeters in various types of tissues. This powerful technology allows the exploration of tissues at an unprecedented level of detail, while preserving the spatial context. By doing so, such technology will also enable researchers to explore cellular and molecular signatures within tissue and correlate with disease course. This will allow an improved understanding of pathophysiology and facilitate a precision medicine approach to assess the response to treatment. The ability to perform large-scale imaging in 3D cannot be realized without the widespread availability of accessible quantitative analysis. In this review, we will outline recent advances in large-scale 3D imaging and discuss the available methodologies to perform meaningful analysis and potential applications in translational research

    Disruption of Intraflagellar Transport in Adult Mice Leads to Obesity and Slow-Onset Cystic Kidney Disease

    Get PDF
    SummaryThe assembly of primary cilia is dependant on intraflagellar transport (IFT), which mediates the bidirectional movement of proteins between the base and tip of the cilium. In mice, congenic mutations disrupting genes required for IFT (e.g., Tg737 or the IFT kinesin Kif3a) are embryonic lethal, whereas kidney-specific disruption of IFT results in severe, rapidly progressing cystic pathology [1–3]. Although the function of primary cilia in most tissues is unknown, in the kidney they are mechanosenstive organelles that detect fluid flow through the tubule lumen [4]. The loss of this flow-induced signaling pathway is thought to be a major contributing factor to cyst formation [5–7]. Recent data also suggest that there is a connection between ciliary dysfunction and obesity as evidenced by the discovery that proteins associated with human obesity syndromes such as Alström and Bardet-Biedl localize to this organelle [8]. To more directly assess the importance of cilia in postnatal life, we utilized conditional alleles of two ciliogenic genes (Tg737 and Kif3a) to systemically induce cilia loss in adults. Surprisingly, the cystic kidney pathology in these mutants is dependent on the time at which cilia loss was induced, suggesting that cyst formation is not simply caused by impaired mechanosensation. In addition to the cystic pathology, the conditional cilia mutant mice become obese, are hyperphagic, and have elevated levels of serum insulin, glucose, and leptin. We further defined where in the body cilia are required for normal energy homeostasis by disrupting cilia on neurons throughout the central nervous system and on pro-opiomelanocortin-expressing cells in the hypothalamus, both of which resulted in obesity. These data establish that neuronal cilia function in a pathway regulating satiety responses
    • …
    corecore