120 research outputs found
Technology Advantage and Trade: Home Market Effects Revisited
According to conventional home market effects, free trade tends to shrink the market share for the smaller economy in the differentiated manufacturing goods, and in the extreme, leads to a complete hollowing out of the industry. In departing from the original Helpman-Krugman modeling assumptions behind the home market effects, we introduce technology differences between trading partners and prove that the home market effects will be offset and will even reverse if the small economy has better technology than the other country. We also prove that even with identical country size, the intra-industry trade addressed in the existing literature may not occur; it will occur only if the technology differential lies within a certain range that is positively affected by the level of transport cost.Home market Effects, Country Size, Technology Differential
TNFAIP3, a negative regulator of the TLR signaling pathway, is a potential predictive biomarker of response to antidepressant treatment in major depressive disorder
AbstractInflammation and abnormalities in Toll-like receptor (TLR) expression and activation have been linked to major depressive disorder (MDD). However, negative regulators of TLR pathways have not been previously investigated in this context. Here, we sought to investigate the association of depression severity, measured by the 17-item Hamilton Depression Rating Scale (HAMD-17), with mRNA expression levels of negative regulators of the TLR pathway, including SOCS1, TOLLIP, SIGIRR, MyD88s, NOD2 and TNFAIP3, in peripheral blood mononuclear cells (PBMCs) from 100 patients with MDD and 53 healthy controls, before and after treatment with antidepressants. Positive regulators of the TLR4 pathway, including Pellino 1, TRAF6 and IRAK1, were also investigated. Among all patients, MyD88s, and TNFAIP3 mRNAs were expressed at lower levels in PBMCs from patients with MDD. Multiple linear regression analyses revealed that TNFAIP3 mRNA expression before treatment was inversely correlated with severity of depression and effectively predicted improvement in HAMD-17 scores. Among 79 treatment-completers, only TNFAIP3 mRNA was significantly increased by treatment with antidepressants for 4 weeks. Treatment of human monocytes (THP-1) and mouse microglia (SIM-A9) cell lines with fluoxetine significantly increased TNFAIP3 mRNA expression and suppressed IL-6 levels. The suppressive effect of fluoxetine on IL-6 was attenuated by knockdown of TNFAIP3 expression. These findings suggest that both dysfunction of the negative regulatory system in patients with MDD and antidepressant treatment exert anti-inflammatory effects, at least in part through increased expression of the TNFAIP3 gene. They also indicate that modulating expression of the TNFAIP3 gene to rebalance TLR-mediated inflammatory signaling may be potential therapeutic strategy for treating MDD
Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses
<p>Abstract</p> <p>Background</p> <p><it>Neocallimastix patriciarum</it> is one of the common anaerobic fungi in the digestive tracts of ruminants that can actively digest cellulosic materials, and its cellulases have great potential for hydrolyzing cellulosic feedstocks. Due to the difficulty in culture and lack of a genome database, it is not easy to gain a global understanding of the glycosyl hydrolases (<it>GHs</it>) produced by this anaerobic fungus.</p> <p>Results</p> <p>We have developed an efficient platform that uses a combination of transcriptomic and proteomic approaches to <it>N. patriciarum </it>to accelerate gene identification, enzyme classification and application in rice straw degradation. By conducting complementary studies of transcriptome (Roche 454 GS and Illumina GA IIx) and secretome (ESI-Trap LC-MS/MS), we identified 219 putative <it>GH </it>contigs and classified them into 25 <it>GH</it> families. The secretome analysis identified four major enzymes involved in rice straw degradation: β-glucosidase, endo-1,4-β-xylanase, xylanase B and Cel48A exoglucanase. From the sequences of assembled contigs, we cloned 19 putative cellulase genes, including the <it>GH1</it>, <it>GH3</it>, <it>GH5</it>, <it>GH6</it>, <it>GH9</it>, <it>GH18</it>, <it>GH43 </it>and <it>GH48 </it>gene families, which were highly expressed in <it>N. patriciarum </it>cultures grown on different feedstocks.</p> <p>Conclusions</p> <p>These <it>GH </it>genes were expressed in Pichia pastoris and/or Saccharomyces cerevisiae for functional characterization. At least five novel cellulases displayed cellulytic activity for glucose production. One β-glucosidase (W5-16143) and one exocellulase (W5-CAT26) showed strong activities and could potentially be developed into commercial enzymes.</p
Prime Focus Instrument of Prime Focus Spectrograph for Subaru Telescope
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber
spectrograph design for the prime focus of the 8.2m Subaru telescope. PFS will
cover 1.3 degree diameter field with 2394 fibers to complement the imaging
capability of Hyper SuprimeCam (HSC). The prime focus unit of PFS called Prime
Focus Instrument (PFI) provides the interface with the top structure of Subaru
telescope and also accommodates the optical bench in which Cobra fiber
positioners are located. In addition, the acquisition and guiding (A&G)
cameras, the optical fiber positioner system, the cable wrapper, the fiducial
fibers, illuminator, and viewer, the field element, and the telemetry system
are located inside the PFI. The mechanical structure of the PFI was designed
with special care such that its deflections sufficiently match those of the HSC
Wide Field Corrector (WFC) so the fibers will stay on targets over the course
of the observations within the required accuracy.Comment: 9 pages, 7 figures, SPIE Astronomical Telescopes and Instrumentation
201
The Current Status of Prime Focus Instrument of Subaru Prime Focus Spectrograph
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber
spectrograph design for the prime focus of the 8.2m Subaru telescope. PFS will
cover 1.3 degree diameter field with 2394 fibers to complement the imaging
capability of Hyper SuprimeCam (HSC). The prime focus unit of PFS called Prime
Focus Instrument (PFI) provides the interface with the top structure of Subaru
telescope and also accommodates the optical bench in which Cobra fiber
positioners are located. In addition, the acquisition and guiding cameras
(AGCs), the optical fiber positioner system, the cable wrapper, the fiducial
fibers, illuminator, and viewer, the field element, and the telemetry system
are located inside the PFI. The mechanical structure of the PFI was designed
with special care such that its deflections sufficiently match those of the
HSC's Wide Field Corrector (WFC) so the fibers will stay on targets over the
course of the observations within the required accuracy. In this report, the
latest status of PFI development will be given including the performance of PFI
components, the setup and performance of the integration and testing equipment.Comment: 9 pages, 8 figures, SPIE proceedin
Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives
PFS (Prime Focus Spectrograph), a next generation facility instrument on the
8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed,
optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394
reconfigurable fibers will be distributed over the 1.3 deg field of view. The
spectrograph has been designed with 3 arms of blue, red, and near-infrared
cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure
at a resolution of ~1.6-2.7A. An international collaboration is developing this
instrument under the initiative of Kavli IPMU. The project is now going into
the construction phase aiming at undertaking system integration in 2017-2018
and subsequently carrying out engineering operations in 2018-2019. This article
gives an overview of the instrument, current project status and future paths
forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and
Instrumentation 201
Systems-wide analysis of manganese deficiency-induced changes in gene activity of Arabidopsis roots
Manganese (Mn) is pivotal for plant growth and development, but little information is available regarding the strategies that evolved to improve Mn acquisition and cellular homeostasis of Mn. Using an integrated RNA-based transcriptomic and high-throughput shotgun proteomics approach, we generated a comprehensive inventory of transcripts and proteins that showed altered abundance in response to Mn deficiency in roots of the model plant Arabidopsis. A suite of 22,385 transcripts was consistently detected in three RNA-seq runs; LC-MS/MS-based iTRAQ proteomics allowed the unambiguous determination of 11,606 proteins. While high concordance between mRNA and protein expression (R = 0.87) was observed for transcript/protein pairs in which both gene products accumulated differentially upon Mn deficiency, only approximately 10% of the total alterations in the abundance of proteins could be attributed to transcription, indicating a large impact of protein-level regulation. Differentially expressed genes spanned a wide range of biological functions, including the maturation, translation, and transport of mRNAs, as well as primary and secondary metabolic processes. Metabolic analysis by UPLC-qTOF-MS revealed that the steady-state levels of several major glucosinolates were significantly altered upon Mn deficiency in both roots and leaves, possibly as a compensation for increased pathogen susceptibility under conditions of Mn deficiency
- …