43 research outputs found

    Predicting Different Types of Conversions with Multi-Task Learning in Online Advertising

    Full text link
    Conversion prediction plays an important role in online advertising since Cost-Per-Action (CPA) has become one of the primary campaign performance objectives in the industry. Unlike click prediction, conversions have different types in nature, and each type may be associated with different decisive factors. In this paper, we formulate conversion prediction as a multi-task learning problem, so that the prediction models for different types of conversions can be learned together. These models share feature representations, but have their specific parameters, providing the benefit of information-sharing across all tasks. We then propose Multi-Task Field-weighted Factorization Machine (MT-FwFM) to solve these tasks jointly. Our experiment results show that, compared with two state-of-the-art models, MT-FwFM improve the AUC by 0.74% and 0.84% on two conversion types, and the weighted AUC across all conversion types is also improved by 0.50%.Comment: SIGKD

    Practical m

    Get PDF
    In collaborative data publishing (CDP), an m-adversary attack refers to a scenario where up to m malicious data providers collude to infer data records contributed by other providers. Existing solutions either rely on a trusted third party (TTP) or introduce expensive computation and communication overheads. In this paper, we present a practical distributed k-anonymization scheme, m-k-anonymization, designed to defend against m-adversary attacks without relying on any TTPs. We then prove its security in the semihonest adversary model and demonstrate how an extension of the scheme can also be proven secure in a stronger adversary model. We also evaluate its efficiency using a commonly used dataset

    DA-TransUNet: Integrating Spatial and Channel Dual Attention with Transformer U-Net for Medical Image Segmentation

    Full text link
    Accurate medical image segmentation is critical for disease quantification and treatment evaluation. While traditional Unet architectures and their transformer-integrated variants excel in automated segmentation tasks. However, they lack the ability to harness the intrinsic position and channel features of image. Existing models also struggle with parameter efficiency and computational complexity, often due to the extensive use of Transformers. To address these issues, this study proposes a novel deep medical image segmentation framework, called DA-TransUNet, aiming to integrate the Transformer and dual attention block(DA-Block) into the traditional U-shaped architecture. Unlike earlier transformer-based U-net models, DA-TransUNet utilizes Transformers and DA-Block to integrate not only global and local features, but also image-specific positional and channel features, improving the performance of medical image segmentation. By incorporating a DA-Block at the embedding layer and within each skip connection layer, we substantially enhance feature extraction capabilities and improve the efficiency of the encoder-decoder structure. DA-TransUNet demonstrates superior performance in medical image segmentation tasks, consistently outperforming state-of-the-art techniques across multiple datasets. In summary, DA-TransUNet offers a significant advancement in medical image segmentation, providing an effective and powerful alternative to existing techniques. Our architecture stands out for its ability to improve segmentation accuracy, thereby advancing the field of automated medical image diagnostics. The codes and parameters of our model will be publicly available at https://github.com/SUN-1024/DA-TransUnet

    Konsep Proses Pemesinan Berkelanjutan

    Full text link
    Metal industrial machining usually strongth pressure from all sectors, ether raw material industries or user metal industries. Manufacturint process which offered to all sectors industries or companies that sustainable manufakturing consist of three main factor are efective cost, enviroment and social performance

    LyricWhiz: Robust Multilingual Zero-shot Lyrics Transcription by Whispering to ChatGPT

    Full text link
    We introduce LyricWhiz, a robust, multilingual, and zero-shot automatic lyrics transcription method achieving state-of-the-art performance on various lyrics transcription datasets, even in challenging genres such as rock and metal. Our novel, training-free approach utilizes Whisper, a weakly supervised robust speech recognition model, and GPT-4, today's most performant chat-based large language model. In the proposed method, Whisper functions as the "ear" by transcribing the audio, while GPT-4 serves as the "brain," acting as an annotator with a strong performance for contextualized output selection and correction. Our experiments show that LyricWhiz significantly reduces Word Error Rate compared to existing methods in English and can effectively transcribe lyrics across multiple languages. Furthermore, we use LyricWhiz to create the first publicly available, large-scale, multilingual lyrics transcription dataset with a CC-BY-NC-SA copyright license, based on MTG-Jamendo, and offer a human-annotated subset for noise level estimation and evaluation. We anticipate that our proposed method and dataset will advance the development of multilingual lyrics transcription, a challenging and emerging task.Comment: 9 pages, 2 figures, 5 tables, accepted by ISMIR 202

    Comparison of Intergrowth-21st and Fenton growth standards to evaluate and predict the postnatal growth in eastern Chinese preterm infants

    Get PDF
    ObjectivesThe aim of this article was to compare the differences between Intergrowth-21st (IG-21) and Fenton growth standards in the classification of intrauterine and extrauterine growth restriction (EUGR) in eastern Chinese preterm infants, and detect which one can better relate to neonatal diseases and predict the physical growth outcomes at 3–5 years old.MethodsPremature infants admitted to a tertiary pediatric hospital in Shanghai, China, from 2016 to 2018 were enrolled. Prenatal information, neonatal diseases during hospitalization, and anthropometric data (weight, height, and head circumference) at birth and at discharge were collected and analyzed. Physical growth outcomes (short stature, thinness, and overweight) were examined by telephone investigations in 2021 at age 3–5 years.ResultsThe medium gestational age and birth weight of the included 1,065 preterm newborns were 33.6 weeks and 1,900 g, respectively. The IG-21 curves diagnosed more newborns with small for gestational age (SGA) (19% vs. 14.7%) and fewer newborns with longitudinal EUGR on height (25.5% vs. 27.9%) and head circumference (17.9% vs. 24.7%) compared to Fenton curves. Concordances between Fenton and IG-21 standards were substantial or almost perfect in the classification of SGA and longitudinal EUGR, but minor in cross-sectional EUGR. EUGR identified by Fenton curves was better related to neonatal diseases than IG-21 curves. There were no statistical significances in the prediction of short stature, thinness, and overweight at 3–5 years old between the two charts.ConclusionsIG-21 growth standards are not superior to Fenton in assessing preterm growth and development in the eastern Chinese population

    Functional interplay between SA1 and TRF1 in telomeric DNA binding and DNA-DNA pairing

    Get PDF
    Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA-DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding

    Design, construction, and functional characterization of a tRNA neochromosome in yeast

    Get PDF
    Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs

    Design, construction, and functional characterization of a tRNA neochromosome in yeast

    Get PDF
    Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs
    corecore