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In collaborative data publishing (CDP), an𝑚-adversary attack refers to a scenario where up to𝑚malicious data providers collude
to infer data records contributed by other providers. Existing solutions either rely on a trusted third party (TTP) or introduce
expensive computation and communication overheads. In this paper, we present a practical distributed 𝑘-anonymization scheme,
𝑚-𝑘-anonymization, designed to defend against𝑚-adversary attacks without relying on any TTPs.We then prove its security in the
semihonest adversary model and demonstrate how an extension of the scheme can also be proven secure in a stronger adversary
model. We also evaluate its efficiency using a commonly used dataset.

1. Introduction

In today’s interconnected society, our sensitive personal data
are increasingly stored in various databases belonging to
different online service providers. Although online service
providers have the duty and vested interest to ensure the
security and privacy of user data, there are instances where
user data are shared or compromised. For instance, a small
to medium sized online service provider may wish to mine
user purchasing patterns in order to fine-tune theirmarketing
strategy and improve sales. Such (data mining) task is likely
to be outsourced to a third-party marketing company; thus,
the records in the online service provider’s database will
be shared with the third-party. In such a scenario, the
online service provider requires a privacy-preserving data
publishing (i.e., sharing) approach to ensure that the data is
shared without breaching user privacy.

If the records to be published are owned by a single
provider, the provider can easily run algorithms, such as [1, 2]

which implement 𝑘-anonymity [3] (a widely used privacy
protection mechanism), to anonymize the data prior to
publishing. 𝑘-anonymity is proposed to solve such problems,
that is, when a data owner or provider wants to publish parts
of its data which is related to some specific persons, how can
it guarantee that these persons cannot be reidentified while
the remaining parts of the data are still practically useful?
Consider a table with 𝑛 rows and 𝑚 columns; each row of
the table represents a record relating to a specific object and
each column represents an attribute of each object. Some
nonprivate attributes can be considered as quasi identifier
(QI). A table satisfying 𝑘-anonymity means QI of each tuple
contained in this table appears at least 𝑘 times [3].

However, data in the real world is unlikely to originate
from a single provider. Solutions seeking to address such
a scenario are known as collaborative privacy-preserving
data publishing (CPPDP). CPPDP has received considerable
attention in recent years (e.g., [4–11]). A straightforward
solution is for all providers to outsource their data to a
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TTP, who will assume control of the data as if the TTP is
publishing its own data. An alternative approach uses Secure
Multiparty Computation (SMC) [12], which allows providers
to collaboratively compute preferred functions upon the
complete dataset without revealing private data [4, 5].

Although these schemes could guarantee that anony-
mized data satisfies 𝑘-anonymity against outsider attackers,
malicious providers (i.e., insider attackers) or vendors who
have access to the provider’s systems may collude to invali-
date 𝑘-anonymity by excluding their own data. Let us now
consider the example described in [13], where in Table 1,
𝑇1, 𝑇2, 𝑇3, 𝑇4 are databases of four hospitals. In this example,
four hospitals wish to collaboratively publish their dataset
without revealing their patients’ privacy (e.g., medical diag-
nosis). Of the nonsensitive attributes ({𝑁𝑎𝑚𝑒, 𝐴𝑔𝑒, 𝑍𝑖𝑝}),
{𝐴𝑔𝑒, 𝑍𝑖𝑝} can be considered a quasi identifier (QI). QI
refers to a set of attributes that are not unique identifiers
in themselves but can be corrected to uniquely identify
most tuples in the dataset [3]. 𝑇∗𝑎 is an anonymized dataset
satisfying 2-anonymity. Each QI group includes 3 records;
therefore, each QI tuple appears at least 2 times in every
group. From {𝐴𝑔𝑒, 𝑍𝑖𝑝}, we cannot infer the disease infor-
mation of different patients. However, if 𝑃1 is an adversary,
it could remove all its data from 𝑇∗𝑎 . Thus, the only record in
this group is provided by𝑃3, and the remaining data no longer
satisfies 2-anonymity. Therefore, the attributes of disease can
be achieved easily. For instance, 𝑃1 can link other datasets
with the remaining part of firstQI group, such as a voter list or
another dataset which contains {𝑁𝑎𝑚𝑒, 𝐴𝑔𝑒, 𝑍𝑖𝑝, etc.}. This
would enable us to infer the disease of Sara by linking two
datasets together. In reality, there could exist more than one
adversary.𝑚 providers, for instance, might collude to remove
their data to infer records contributed by other providers.
This is known as the𝑚-adversary problem in the literature.

Seeking to address the 𝑚-adversary problem, Goryczka
et al. [13] introduce the concept of 𝑚-privacy which is the
focus of this paper. More specifically, we focus on 𝑚-privacy
with respect to 𝑘-anonymity, which is referred to as 𝑚-𝑘-
anonymity in the remainder of this paper. Suppose that the
total number of providers participating in the collaborative
data publishing is 𝑛, and the published data after collabo-
rative anonymization satisfies 𝑚-𝑘-anonymity if, and only
if, subdata from any 𝑛 − 𝑚 providers satisfies 𝑘-anonymity.
When 𝑚 adversaries remove all their data, the remaining
data in the table still satisfies 𝑘-anonymity.The corresponding
anonymization process is the 𝑚-𝑘-anonymization, and as
an example, 𝑇∗𝑏 is an anonymized dataset satisfying 1-2-
anonymity. From the table, we can see that each QI group
in 𝑇∗𝑏 contains 3 records. Even if one of the providers is an
adversary, that is, 𝑃1 is an adversary and it removes all its data
from the first QI group, the remaining two records in the first
QI group of 𝑇∗𝑏 still satisfy 2-anonymity.

Goryczka et al. present a TTP-dependent CPPDP scheme
that achieves𝑚-𝑘-anonymity. However, TTP does not always
exist in the real world [14, 15]. This is especially true in after-
math Edward Snowden’s revelation that the US Government
has been conducting large-scale government surveillance
(http://masssurveillance.info/). They then present a SMC
variant of this scheme based on a series of cryptographic

Table 1:𝑚-adversary and𝑚-privacy example.

(a) 𝑇1

Name Age Zip Disease
Alice 24 98745 Cancer
Bob 35 12367 Epilepsy
Emily 22 98712 Asthma

(b) 𝑇2

Name Age Zip Disease
Olga 32 98701 Cancer
Mark 37 12389 Flu
John 31 12399 Flu

(c) 𝑇3

Name Age Zip Disease
Sara 20 12300 Epilepsy
Cecilia 39 98708 Flu

(d) 𝑇4

Name Age Zip Disease
Olga 32 98701 Cancer
Frank 33 12388 Asthma

(e) 𝑇∗𝑎

Providers Name Age Zip Disease
𝑃1 Alice [20–30] ∗ ∗ ∗ ∗ ∗ Cancer
𝑃1 Emily [20–30] ∗ ∗ ∗ ∗ ∗ Asthma
𝑃3 Sara [20–30] ∗ ∗ ∗ ∗ ∗ Epilepsy
𝑃2 John [31–34] ∗ ∗ ∗ ∗ ∗ Flu
𝑃2, 𝑃4 Olga [31–34] ∗ ∗ ∗ ∗ ∗ Cancer
𝑃4 Frank [31–34] ∗ ∗ ∗ ∗ ∗ Asthma
𝑃1 Bob [35–40] ∗ ∗ ∗ ∗ ∗ Epilepsy
𝑃2 Mark [35–40] ∗ ∗ ∗ ∗ ∗ Flu
𝑃3 Cecilia [35–40] ∗ ∗ ∗ ∗ ∗ Flu

(f) 𝑇∗𝑏

Providers Name Age Zip Disease
𝑃1 Alice [20–40] ∗ ∗ ∗ ∗ ∗ Cancer
𝑃2 Mark [20–40] ∗ ∗ ∗ ∗ ∗ Flu
𝑃3 Sara [20–40] ∗ ∗ ∗ ∗ ∗ Epilepsy
𝑃_1 Emily [20–40] 987 ∗ ∗ Asthma
𝑃2, 𝑃4 Olga [20–40] 987 ∗ ∗ Cancer
𝑃3 Cecilia [20–40] 987 ∗ ∗ Flu
𝑃_1 Bob [20–40] 123 ∗ ∗ Epilepsy
𝑃_4 Frank [20–40] 123 ∗ ∗ Asthma
𝑃_2 John [20–40] 123 ∗ ∗ Flu

protocols (e.g., secure sum, secure comparison, and secure
size of set union) to remove the need for a TTP. However, this
variant is not specially designed for 𝑚-𝑘-anonymity, and the
constituent cryptographic protocols are too time consuming
to be practical for real-world deployment.

http://masssurveillance.info/
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In this paper, we propose a TTP-independent CPPDP
scheme designed to achieve 𝑚-𝑘-anonymity in a more effi-
cient manner. We observe that the process of 𝑘-anonymity
involves no sensitive attributes, and hence, we divide our
scheme into two phases. Firstly, we use a centralized server
which is not required to be trusted to aggregate nonsensitive
components (i.e., QI attributes) of records from each provider
and anonymize these components to ensure𝑚-𝑘-anonymity.
Secondly, we design a distributed privacy-preservingmethod
to aggregate values of sensitive attributes for each equivalence
group without breaching 𝑚-𝑘-anonymity. In other words,
we present a practical two-phase CPPDP scheme without
the need for a TTP, before demonstrating that the proposed
scheme achieves 𝑚-𝑘-anonymity in the widely accepted
semihonest model. In the event that providers are malicious
and attempt to modify user data, users are unlikely to find
out about the tampering. Therefore, we present an effective
sampling-based defense strategy against such an attack. We
then evaluate the time efficiency of the proposed schemewith
a public dataset including 45222 records. Our evaluations
demonstrate that the time overhead increases linearly with 𝑛,
which is reasonable for an offline scheme.

2. Related Work

Recent trends in big data and cloud computing have partly
contributed to renewed interest in privacy-preserving data
publishing [16–19]. Existing literature on privacy-preserving
data publishing can be broadly classified into the following
categories.

Single Provider. Most existing research focus on the scenario
involving a single data owner wanting to publish its own data,
such as 𝑘-anonymity [3], 𝑙-diversity [20], and 𝑡-closeness [21].
Of these privacymodels, 𝑘-anonymity has the longest history,
and many efficient algorithms have been developed to imple-
ment 𝑘-anonymity. Examples of a bottom-up generalization
approach and a top-down specification approach is Incognito
[2] and Mondrian [1], respectively.

Collaborative Data Publishing. In the collaborative data pub-
lishing literature, the focus is on privacy-preserving algo-
rithms for distributed setups. For example, Jiang and Clifton
[6] propose a protocol implementing 𝑘-anonymity on a
vertically partitioned dataset.The protocol presented in [7] is
designed to extract anonymized data from a set of providers,
which is then published to the miner. Jiang and Clifton
[8] present a SMC framework for data sharing between
two untrusted parties, and Jurczyk and Xiong [9] present
several decentralized protocols to ensure the user’s privacy
during the querying of multiple databases. Mohammed et
al. [10] seek to address the privacy-preserving problem in
a specific application of data mashup in the web, which
is a typical distributed scenario. The authors also present
distributed algorithms to integrate healthcare data [11]. The
protocol presented in [5] allows protocol participants decide
in advance whether its utility is acceptable prior to execution.

Insider Attackers.Goryczka et al. [13] present the𝑚-adversary
problem, where data providers are considered as potential

attackers. To address such a threat, they propose the 𝑚-
privacy model and present an efficient and effective TTP-
based anonymization scheme. A key limitation of the scheme
is the need for a TTP, which is not always available in the real
world.Therefore, a SMC-based variantwhich does not rely on
TTP is proposed by Goryczka et al. However, as noted by the
authors, the SMC scheme is only a conceptual scheme that is
not practical for real-world deployment due to the significant
time overhead of the underlying protocols. This is the gap we
seek to address in this paper, by presenting a practical SMC-
based𝑚-privacy implementation.

3. Problem Definition

Let 𝑃 = {𝑃1, 𝑃2, . . . , 𝑃𝑛} be the set of all data providers, who
own a set of records, 𝑇𝑖. 𝑇, defined as 𝑇 = {𝑇1, 𝑇2, . . . , 𝑇𝑛}, is
the set of all records. Providers aim to collaboratively publish
the dataset 𝑇 while preventing attackers from identifying
records of individuals. In such a distributed environment, the
providers may not trust each other. In other words, none of
the providers can be considered as a TTP, and the publisher
(considered as a separate party) is also not a trusted party.

Definition 1 (𝑘-anonymity in CPPDP). Given 𝑛 providers,
𝑃1, 𝑃2, . . . , 𝑃𝑛, each with a dataset, 𝑇1, 𝑇2, . . . , 𝑇𝑛 (𝑇𝑖 owned
by 𝑃𝑖), the result set of CPPDP satisfies 𝑘-anonymity if, and
only if, each QI group contains at least 𝑘 records: that is,
∀𝑖 (1 ≤ 𝑖 ≤ 𝑛𝑔), |QI𝑖| ≥ 𝑘, where 𝑛𝑔 is the number of QI
groups.

𝑘-Anonymity can prevent external adversaries from infer-
ring sensitive attributes with QIs. However, 𝑘-anonymity is
unable to address the 𝑚-adversary problem, as malicious
providers (i.e., insiders)may collude to remove their owndata
to violate the 𝑘-anonymity of the remaining data. Targeting
this problem,we define a newprivacymodel whichwe coined
𝑚-𝑘-anonymity. The 𝑚-𝑘-anonymity model is adapted from
the𝑚-privacy model of Goryczka et al. [13].We denote the set
of records owned by all adversaries 𝑃𝐴 = {𝑃𝑎1 , 𝑃𝑎2 , . . . , 𝑃𝑎𝑚} to
be 𝑇𝐴; that is, 𝑇𝐴 = ⋃𝑃𝑖∈𝑃𝐴 𝑇𝑖. In other words, 𝑇𝐴(QI𝑖) is the
set of those records owned by any adversary in group QI𝑖.

Definition 2 (𝑚-𝑘-anonymity). Given a set of 𝑛providers,𝑃 =
{𝑃1, 𝑃2, . . . , 𝑃𝑛}, 𝑚 adversaries, and 𝑃𝐴 = {𝑃𝑎1 , 𝑃𝑎2 , . . . , 𝑃𝑎𝑚},
the result satisfies 𝑚-𝑘-anonymity if and only if, ∀𝑃𝐴 ⊂
𝑃, |𝑃𝐴| = 𝑚, ∀𝑖 (1 ≤ 𝑖 ≤ 𝑛𝑔), |QI𝑖| − |𝑇𝐴(QI𝑖)| ≥ 𝑘.

It means that, for every equivalence group in the
anonymized dataset, its size excluding the number of records
owned by any 𝑚 providers must be larger than 𝑘. In
other words, after 𝑚 colluding providers have removed their
records, each group must contain more than 𝑘 records.

Design Goal. An efficient and practical CPPDP scheme pro-
viding𝑚-𝑘-anonymity without involving a TTP is designed.

4. Two-Phase Scheme Providing 𝑚-Privacy

4.1. Semihonest Model. After defining 𝑚-𝑘-anonymity in the
preceding section (see Definition 2), we will now present our
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(1) if no allowable multidimensional cut for partition then
(2) return 𝜙: partition → statistic summary
(3) else
(4) dim ← chooseDimension()
(5) fs1, . . . , fs𝑛𝑔−1 ← f requencySet(partition, dim)

(6) splitVal1, . . . , splitVal𝑛𝑔−1 ← findMedian(fs1, . . . , fs𝑛𝑔−1)
(7) QI1 ← {𝑡 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 : 𝑡.𝑑𝑖𝑚 ≤ splitVal1}
(8) QI2 ← {𝑡 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 : splitVal1 < 𝑡.𝑑𝑖𝑚 ≤ splitVal2}
(9) ⋅ ⋅ ⋅
(10) QI𝑛𝑔 ← {𝑡 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 : 𝑡.𝑑𝑖𝑚 > splitVal𝑛𝑔−1}
(11) return QI1 ∪QI2 ∪ ⋅ ⋅ ⋅ ∪QI𝑛𝑔
(12) end if

Algorithm 1: Modified Mondrian algorithm.

Phase I: send
insensitive data directly

Publisher

Sensitive

Phase II: secure
aggregation

P1 P2

T1 T2
Tn

Pn

· · ·

T
∗

Figure 1: Our proposed two-phase scheme.

two-phase scheme. In our scheme, we have two key assump-
tions (Assumptions 3 and 4).

Assumption 3. The adversaries are semihonest (i.e., honest
but curious), whowill faithfully follow the protocol. However,
these adversaries will also try to infer user privacy based on
the protocol interactions.

Assumption 4. There are at most𝑚 colluding providers.

4.2. Two-Phase Scheme. Our scheme, based on Observation
1, consists of two phases. In the first phase, all providers
transmit only data with no private attributes to the untrusted
publisher, who will carry out an algorithm implementing𝑚-
𝑘-anonymity on the received data (see Section 4.2.1). In the
second phase, 𝑚 + 1 randomly choose providers to collabo-
ratively aggregate data with private attributes using a suitable
cryptographic system (see Section 4.2.2). An illustration of
the scheme is depicted in Figure 1.

Observation 5. The anonymization process for 𝑘-anonymity
does not involve private attributes.

4.2.1. Phase I: 𝑘-Anonymization with Insensitive Attributes.
In Phase I, the providers remove private attributes from the

data prior to sending it to a third-party publisher that they
may not truly trust. The publisher will then run a modified
Mondrian algorithm on the received data to achieve 𝑚-𝑘-
anonymity. Mondrian [1], one of the most efficient algo-
rithms implementing 𝑘-anonymity, models the dataset using
a multidimensional space with each attribute contributing a
dimension. 𝑘-Anonymization in this multidimensional space
is to recursively partition each subspace into two smaller
subspaces which do not overlap with each other until the stop
condition is satisfied. Each subspace represents a QI group.

To achieve 𝑚-𝑘-anonymity, we modify the termination
condition of Mondrian based on Conclusion 6.

Conclusion 6. Let 𝑃𝑖𝑗 (1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛𝑔) be𝑚 providers
who have the most records in group QI𝑖. If ∀QI𝑖 (1 ≤ 𝑖 ≤
𝑛𝑔), |QI𝑖| − ∑𝑚𝑗=1 |𝑇𝑃𝑖𝑗(QI𝑖)| ≥ 𝑘, then the result satisfies 𝑚-𝑘-
anonymity.

Conclusion 6 is straightforward to draw: as the set 𝑃𝑖𝑗
denotes the 𝑚 providers contributing the most records in
QI𝑖 and |QI𝑖| − ∑𝑚𝑗=1 |𝑇𝑃𝑖𝑗(QI𝑖)| ≥ 𝑘, it is easy to infer that,
after removing any 𝑚 providers data from QI𝑖, the number
of remained records must be no less than 𝑘. This means each
group still satisfies 𝑘-anonymity.

Based on this conclusion, we modify Mondrian so that
the algorithm terminates when, in every subspace, a further
partition will result in the number of records, owned by 𝑚
providers who have most records, being greater than the
total number minus 𝑘. The output of this algorithm is a
number of QIs subject to𝑚-𝑘-anonymity.More details on the
algorithm are demonstrated in Algorithm 1. Each iteration in
Algorithm 1 is divided into 𝑛𝑔 −1 frequency sets according to
dimension and values. Then for each frequency set, the split
value will be calculated. According to 𝑛𝑔 − 1 split values, the
attributes can be divided into 𝑛𝑔 subspaces. Each subspace
is a group of quasi identifier. The algorithm returns QIs that
consist of QI1,QI2, . . . ,QI𝑛𝑔 .

4.2.2. Phase II: Private Data Aggregation. In order to ensure
the security of the private data, Phase II of our scheme uses
a secure public-key cryptographic algorithm of the scheme
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Figure 2: Phase II: private data aggregation.

implementer’s choice, such as RSA. Every provider generates
its public and private key pair, makes public the public key,
and protects the private key.

The publisher will first send QIs obtained in Phase I to
every provider. At the same time, the publisher randomly
selects 𝑚 + 1 decryption providers, 𝑃𝑑 = {𝑃𝑑0 , 𝑃𝑑1 , . . . , 𝑃𝑑𝑚},
from𝑃 and sends their addresses to each provider.We denote
the remaining providers as 𝑃𝑟𝑖 (0 ≤ 𝑖 ≤ 𝑛 − 𝑚 − 2).
On receiving QIs, every provider iteratively assigns private
attributes of every record to the group whose QI contains
its value of every nonprivate attribute. The providers encrypt
the private data and their group information, using 𝑚 +
1 decryption providers’ encryption keys one at a time, in
the reverse order of the addresses they received. Note that
the encryption scheme used needs to be probabilistic (i.e.,
basic requirement of a secure encryption scheme). In other
words, the encryption scheme introduces randomness in the
encryption so that the encryption of the same message will
produce a different cipher text each time.

As illustrated in Figure 2, the chain consists of 𝑚
providers. We choose 𝑃𝑑0 as the first decryption provider
in the chain. All providers (𝑃𝑟𝑛−𝑚−2 , . . . , 𝑃𝑟0 , 𝑃𝑑0 , . . . , 𝑃𝑑𝑚) will
decrypt their data and send the encrypted data to the first
decryption provider 𝑃𝑑0 . Upon receiving all encrypted data,
𝑃𝑑0 will decrypt and uniformly repermute the decrypted data,
prior to sending the decrypted data to the next decryp-
tion provider (𝑃𝑑0 , . . . , 𝑃𝑑𝑚). All decryption providers in the
chain repeat the same process, sequentially. When the last
decryption provider obtains the partially decrypted data, it
performs the (last) decryption and submits to the publisher.
This repermutation process breaks the linkage between the
data and their providers.

In our proposal, providers have to perform decryption
operations, which would inevitably bring additional commu-
nication and computation overheads. However, considering
the fact that the data publishing is usually performed offline,
we think higher overheads are affordable so long as they

are still within reasonable bounds (e.g., a couple of hours
or days). The detailed complexity analysis of our proposal is
shown in Section 4.3. Our experiment results on real-world
datasets in Section 6 also show that the time overheads are
within the acceptable range.

4.3. Security Analysis. We now present the security proof for
our proposed scheme based onTheorem 7.

Theorem 7. The two-phase scheme can correctly implement
𝑚-𝑘-anonymity in the semihonest model (described in Sec-
tion 4.1).

Proof.

Phase I. It is trivial to observe that data privacy will not be
compromised, since the providers transmit only data with no
private attributes.

Phase II. Since at most 𝑚 providers are malicious and there
are 𝑚 + 1 or more decryption providers, there must exist at
least one honest decryption provider in the decryption chain
(which is the worse-case scenario).

Case 1. Adversaries are in front of honest decryption
providers in the decryption chain. The adversaries are not
able to fully decrypt the cipher texts as they do not have all
decryption keys, although knowing the cipher text produced
by another provider can be useful in inferring a record’s
private attribute.

Case 2. Adversaries are after honest decryption providers
in the decryption chain. In this case, the adversaries could
collaborate to obtain the plain text of the private data, but
they are unable to map the data to their owners due to mix
operations of the (one or more) honest provider(s).

Case 3. Adversaries are both before and after honest
decryption providers in the decryption chain (e.g.,
𝐴𝑑V𝑒𝑟𝑠𝑎𝑟𝑦1, 𝐴𝑑V𝑒𝑟𝑠𝑎𝑟𝑦2, . . . , 𝐴𝑑V𝑒𝑟𝑠𝑎𝑟𝑦𝑥, 𝐻𝑜𝑛𝑒𝑠𝑡𝑃𝑟𝑜V𝑖𝑑𝑒𝑟1,
𝐴𝑑V𝑒𝑟𝑠𝑎𝑟𝑦𝑥+1, 𝐻𝑜𝑛e𝑠𝑡𝑃𝑟𝑜V𝑖𝑑𝑒𝑟2, 𝐴𝑑V𝑒𝑟𝑠𝑎𝑟𝑦𝑥+2, . . .). In this
case, before data pass the honest providers, adversaries will
not be able to collaborate to fully decrypt the data as they
do not have all decryption keys. After the data has passed
the honest provider(s), the adversaries could collaborate
to decrypt the records. However, since the data has been
repermuted by the honest provider(s), the adversaries will
not be able to link the records to their owners. Therefore, the
proposed scheme is still secure under this case.

Complexity Analysis. Phase I: the complexity of the modified
Mondrian algorithm is 𝑂(𝑁 log𝑁), similar to the perfor-
mance in the original Mondrian algorithm, where 𝑁 is
the total number of records. As the providers submit their
insensitive data directly to the publisher, the communication
complexity of Phase I is 𝑂(𝑁).

Phase II: the major computations are the encryption and
decryption of private attributes, but it is easy to find that every
record involves𝑚+1 encryptions and𝑚+1decryptions.Thus,
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the computation complexity of Phase II is 𝑂(𝑚𝑁). Since an
encrypted record is transmitted for up to 𝑚 + 2 times, the
communication complexity of Phase II is also 𝑂(𝑚𝑁).

4.4. Discussion. In this part, we will discuss the reliability of
our scheme and compare it with TTP-scheme proposed by
Goryczka et al. [13].

Goryczka et al. propose an anonymization algorithm
based on the Binary Space Partitioning.This algorithm can be
implemented in a distributed environment by a trusted third
party (TTP), which is considered as a secure anonymization
protocol. It consists of two subprotocols. This first one is the
provider-aware anonymization protocol. The time complex-
ity of this protocol is determined by the number of records
𝑁 and the number of attributes |𝑞|. The analysis on provider-
aware anonymization protocol shows that its time complexity
equals 𝑂(𝑁(𝑞 + 1)(𝑞2 + 𝑛𝑝𝑠)), where 𝑛 is the number of
providers and 𝑝𝑠 is the maximal number of fake values. The
second one is the secure fitness score protocol and its time
complexity is 𝑂(𝑛2 + 𝑛𝑝𝑠).

However, it is not easy to find a trusted third party in
the real world. So, our scheme is TTP-independent which
can achieve 𝑚-𝑘-anonymity in a more practical manner.
Since we assume that there are at most 𝑚-adversaries and
the total number of providers is more than 𝑚 + 1, there
must exist at least one honest provider. We have proved
the security of this proposal in Section 4.3. Our scheme is
divided into two phases. The time complexity of Phase I is
𝑂(𝑁 log𝑁). Phase II’s time complexity equals 𝑂(𝑚𝑁). The
time complexity of our scheme increases linear with 𝑛, where
𝑛 is the number of providers, which is reasonable for an
offline scheme. According to these facts, we think that our
scheme is more secure in the real-world since it does not
rely on any trusted third-party. What is more, the increased
computation overheads due to encryptions and decryptions
are within acceptable range, which have been demonstrated
by our experiments on real datasets.

5. An Extended Scheme Secure
against a Stronger Adversary Model

5.1. Fully Malicious Model. The semihonest model, while
widely accepted in the literature, may not be practical in the
real world. More specifically, in the semihonest model, we
are trusting providers not to misbehave. For example, Choo
[22, 23] remarked that “there are legitimate concerns about
cloud service providers being compelled to hand over user
data that reside in the cloud to government agencies without
the user’s knowledge or consent due to territorial jurisdiction
by a foreign government.” Similar concerns were raised
in [24], which then presented an extended proxy-assisted
approach to address the concern of the need to trust the cloud
server not to disclose user’s proxy keys which is inherent in
proxy/mediator assisted user revocation approaches.

Therefore, in this section, we will present a fully mali-
cious model, which does not require an adversary to follow
the protocol. In fact, the adversary’s aim is to successfully
compromise user privacy. In the remainder of this paper,
we will focus on tampering attacks that can be undertaken

by (malicious) decryption providers. More specifically, if a
decryption provider is malicious, the provider can replace
encrypted data belonging to one or more honest providers
with fictitious or fabricated data. Consequently, in the pub-
lished result, the adversary(ies) can remove its/their original
data and the fictitious or fabricated data inserted by the
decryption provider from a number of QI groups. Hence,
these groups will contain fewer than 𝑘 records.

5.2. Sampling-Based Extension. The sampling-based exten-
sion of our scheme is described as follows.

From Section 4.2.2, we know that every provider encrypts
the private data and their group information using 𝑚 +
1 decryption providers’ public keys one at a time. After
encrypting the private data with the respective public keys,
every provider generates 𝑚 + 1 special strings, SS𝑖𝑗 (0 ≤

𝑗 ≤ 𝑚) of 𝑃𝑖, and sends SS𝑖𝑗 to the decryption provider 𝑃𝑑𝑗 .
These strings are special because they do not have any group
information. Then, each provider 𝑃𝑖 (1 ≤ 𝑖 ≤ 𝑛) adds 𝑠 pieces
of every SS𝑖𝑗 (0 ≤ 𝑗 ≤ 𝑚) encrypted with {𝑃𝑑𝑗 , 𝑃𝑑𝑗−1 , . . . , 𝑃𝑑0}’s
public keys, respectively, and mixes them with the encrypted
private data.

Once 𝑃𝑑𝑗 has finished the necessary decryption, 𝑛 ∗ 𝑠

special strings should have been fully decrypted.𝑃𝑑𝑗 can easily
distinguish these fully decrypted strings from previously
obtained information. Therefore, these special strings can be
removed. Only when the number of every SS𝑖𝑗 (1 ≤ 𝑖 ≤ 𝑛)

equals 𝑠 could the decryption provider sends the remaining
decrypted data to the next decryption provider; otherwise,
the decryption provider must discard all data and inform the
publisher and the other providers. We suppose adversaries
remove each record with probability 𝑟; then every provider’s
detection rate is 1 − (1 − 𝑟)𝑠. For a specific dataset, different
𝑠 correspond to different detection rate. So we can set a
threshold; if the detection rate is greater than the threshold,
then we choose the value of 𝑠 as the number of special strings
to be added by each provider. For example, in Section 6 we
can choose 𝑠 = 300 when the detection rate is greater than
95%.

Worst-Case Scenario Analysis. There is only one honest
decryption provider in the decryption chain. Adversaries
appearing after the honest decryption provider in the decryp-
tion chain cannot tell the data’s owners even if they fully
decrypt the cipher texts because the honest provider has
faithfully repermuted the data which will break the relation
between the cipher texts and their providers. Adversaries
appearing before the honest provider in the decryption chain
have access to the information which identifies the provider.
However, these adversaries will not be able to fully decrypt
all data except the special strings for validation. Therefore,
regardless of themethod used, the adversaries could probably
remove some special strings which can be detected by the
honest decryption provider. This simple method fulfills our
design goal (i.e., an efficient and practical CPPDP scheme
providing𝑚-𝑘-anonymity without involving a TTP), without
compromising on the quality of the result. Although the
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Figure 3: Execution time.

additional data do not have group information, it can be easily
distinguished and removed from the result.

Suppose that adversaries appearing before the honest
provider in the decryption chain remove each private record
of𝑃𝑖 independently with probability 𝑟; then the detection rate
is 1 − (1 − 𝑟)𝑠 by 𝑃𝑖. By inserting additional validation strings,
we will achieve a higher detection rate. However, this will
result in a longer processing time.

6. Experiment Setup and Findings

We now describe our experimental setup and findings.

6.1. Setup. We performed the experiments on several
machines, each with 2.4GHz Xeon E5 CPU and 2G RAM.
The operating systems are Ubuntu 12.04 and the imple-
mentation was built and run in Java 2 Platform Standard
Edition 7.0. We used the Adult dataset (http://archive.ics.uci
.edu/ml/datasets/Adult), which is a commonly used bench-
mark in the literature [25–27]. We combined the training
and test sets in the Adult dataset and removed records with
missing attributes. Thus, we ended up with a dataset of
45222 records with 14 attributes. We assigned {age, workclass,
fnlwgt, education, education-num,marital-status, relationship,
race, sex, capital-gain, capital-loss, hours-per-week, native-
country, salary} as theQI and occupation as a private attribute.
The total datasets were uniformly distributed among 𝑛 data
providers so that each of them was assigned a subset of
similar size. We implemented RSA due to its popularity in
commercial applications; each provider generates 1024-bit
keys. We considered time as the key efficiency metric in our
evaluations.

6.2. Findings. We measured the time between the publisher
executing the scheme and receiving the resulting dataset.
Findings are illustrated in Figure 3. In Figure 3(a), 𝑛 ∗ 3000
records were chosen from the original dataset and uniformly
distributed among 𝑛 providers; thus, each provider had 3000
records on average. In Figure 3(b), all 45222 records were
uniformly distributed among 𝑛 = 10 providers.

According to the definition of𝑚-𝑘-anonymity, theremust
exist at least one honest provider among 𝑛 providers. Thus,
𝑛 is always greater or equal to 𝑚 + 1. It can be seen from
Figure 3(a) that the execution time is approximately linear
to 𝑛, which represents the size of the complete dataset. The
result is also consistent with our guess. Even in the event that
there are 15 providers, the time cost is below 20minutes when
𝑚 = 2. When 𝑛 = 15 and 𝑚 = 5, the time cost is below 35
minutes. This is sufficiently efficient since data publishing is
usually performed offline. In addition, from Figure 3(b), we
can see that the execution time increases a little faster with
𝑚. This is easy to understand since more colluding providers
indicate more encryptions and decryptions for each record
and these cryptographic operations are very time consuming.
Fortunately, the increased rate is still acceptable since the total
number of encryptions and decryptions increases linearly
with𝑚. If we assume that fewer than half of the providersmay
collude, the time cost is around one hour, which is reasonable
for an offline algorithm.

According to the literature [13], the runtime of TTP-
scheme is very high. The computation time of TTP-scheme
increases almost exponentially with 𝑛 which represents the
number of providers. So doing experiment on secure 𝑚-
privacy anonymization which is a subprotocol in TTP-
scheme to achieve the computation time is unrealistic. Hence,
we take the same approach as the authors mentioned in [13]
to estimate the magnitude of computation time on the same
dataset.The result is shown in Figure 4. Figure 4(a) shows the
estimated timewith varying values of 𝑛. In Figure 4(a), we can
see that the computation time increases exponentially with 𝑛.
And Figure 4(b) describes the estimated time varying differ-
ent 𝑚. Due to the provider-aware anonymization protocol in
TTP-scheme, when the number of adversaries increases, the
computation time decreases exponentially. Provider-aware
means that providers will be aware if there exist one or
more adversaries among all providers.Thus, as the number of
adversaries increases, providers will discover adversaries ear-
lier. So the increasing𝑚will cause the anonymization process
to end earlier. In terms of TTP-scheme implementation, the
secure protocols can be chosen as different algorithms, such

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult
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as 𝑡𝑜𝑝 − 𝑑𝑜𝑤𝑛, 𝑏𝑖𝑛𝑎𝑟𝑦. The choice of the algorithm will not
adversely affect the result of computation time.

We also remark that the security of the TTP-based
scheme can be guaranteed, in the sense that the m-privacy
anonymization protocol in TTP-scheme is secure as long as
the subprotocol in the scheme is secure. We refer interested
reader to [13] for the detailed security proof. Both TTP-
scheme and our TTP-independent scheme can achieve m-
privacy and 𝑘-anonymity. However, our algorithm is more
efficient and practical. Due to the use of a strong encryp-
tion/decryption algorithm, our scheme is more secure in
practice.The execution time of our scheme on the real dataset
demonstrates that it is practical for deployment, especially for
an offline algorithm.

The following experiments illustrate the number of spe-
cial strings we need to insert in order to obtain an ideal
detection rate.We ran our extended scheme 1000 times under
different settings (e.g., different adversary discarding rates
and numbers of special strings). Suppose that the adversaries
appearing before the honest decryption provider in the
decryption chain collaboratively remove each record inde-
pendently with probability 𝑟. Figure 5(a) shows the detec-
tion rate under different 𝑠 (the number of inserted validation

strings) when 𝑟 = 0.01 and Figure 5(b) shows the detection
rates to different discarding rates when 𝑠 = 300.

It can be seen in Figures 5(a) and 5(b) that, when adver-
saries remove each recordwith probability 1% independently,
inserting 300 special strings yields a detection rate larger than
95%. For our experimental settings, 300 is about 1/15 of the
size of each provider’s dataset, and the extension will increase
the execution time by about 1/15 as the total time is linear
to the number of records. In other words, the number of
validation strings to be inserted is determined by the desired
detection rate and discarding rate of the context.

7. Conclusion

In this paper, we studied the 𝑚-adversary problem, where 𝑚
(geographically dispersed) providers could collude. Existing
solutions either depend on a trusted third party (TTP) or
have impractical time overheads. In our proposed two-phase
scheme, however, we demonstrated how our scheme can
be used to implement 𝑚-𝑘-anonymity without the need for
a TTP. We also proved the security of the scheme in a
semihonest adversary model. We then explained how our
scheme can be extended so that it is also secure in a stronger
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adversary model. Lastly, our experiments demonstrated the
practicality of our scheme to be deployed in a real-world
context.

Future research include extending the scheme to provide
𝑚-privacy with respect to other privacy constraints and
generalize the scheme to implement 𝑚-privacy with respect
to 𝑘-anonymity on distributed incremental datasets or collab-
orative data republishing.
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