125 research outputs found

    Otterbein Aegis May 1909

    Get PDF
    https://digitalcommons.otterbein.edu/aegis/1182/thumbnail.jp

    Genomic research and applications in the duck (Anas platyrhynchos)

    Get PDF
    As a major natural reservoir of influenza virus and an important food source, the duck is of great biological interest, e.g. in the area of host-pathogen interactions. Recently, preliminary genetic and cytogenetic maps of the duck have become available, providing for the first time a glimpse at a comparative map between the duck and chicken. These genetic tools have been used to detect QTLs related to duck growth, carcass and meat quality traits. However, molecular genetic research in the duck is only in its infancy. In the future we can expect the development of new duck resources, including a high-density genetic map, detailed comparative maps with the chicken and other vertebrates - and given the pace of genomics, possibly a genome sequence. These new resources will be used to evaluate the genetic diversity of global duck breeds, to define genetic markers to increase the quantity and quality of egg and meat products, and to aid in the battle against infectious diseases, such as avian influenza

    Compound dietary fiber and high-grade protein diet improves glycemic control and ameliorates diabetes and its comorbidities through remodeling the gut microbiota in mice

    Get PDF
    Dietary intervention with a low glycemic index and full nutritional support is emerging as an effective strategy for diabetes management. Here, we found that the treatment of a novel compound dietary fiber and high-grade protein diet (CFP) improved glycemic control and insulin resistance in streptozotocin-induced diabetic mice, with a similar effect to liraglutide. In addition, CFP treatment ameliorated diabetes-related metabolic syndromes, such as hyperlipidemia, hepatic lipid accumulation and adipogenesis, systemic inflammation, and diabetes-related kidney damage. These results were greatly associated with enhanced gut barrier function and altered gut microbiota composition and function, especially those bacteria, microbial functions, and metabolites related to amino acid metabolism. Importantly, no adverse effect of CFP was found in our study, and CFP exerted a wider arrange of protection against diabetes than liraglutide. Thereby, fortification with balanced dietary fiber and high-grade protein, like CFP, might be an effective strategy for the management and treatment of diabetes

    NO-1886, a lipoprotein lipase activator, attenuates contraction of rat intestinal ring preparations

    Get PDF
    Various intestinal symptoms or diseases are closely associated with intestinal motility, which may be altered by metabolic disturbances associated with diabetes and obesity. It is therefore important that drugs used in the treatment of metabolic disorders should not have any adverse effects on the intestine. In the present study, we examined whether [4-(4-bromo-2-cyano-phenylcarbamoyl)-benzyl]-phosphonic acid diethyl ester (NO-1886), a lipoprotein lipase activator with anti-diabetic and/or anti-obese activity, affects stimulant-induced intestinal contractility. Administration of NO-1886 to intestinal ring preparations of ileum, rectum and colon isolated from Wistar rats attenuated or relaxed contraction induced by a high K+ environment or acetylcholine (ACh). This effect of NO-1886 was dependent on extracellular Ca2+ and intracellular myosin light chain kinase activity. Our results also showed that ACh-induced colonic contraction was significantly higher in the obese Otsuka Long-Evans Tokushima Fatty (OLETF) than in the non-obese Long-Evans Tokushima Otsuka (LETO) rats. The hypercontractility observed in the colons of OLETF rats occurred concomitantly with an elevation in muscarinic M3 ACh receptor protein levels. Administration of NO-1886 attenuated the obesity-induced hypercontractility of the colonic rings of OLETF rats. Thus, intestinal contractile system would be a novel pharmacological target of the lipoprotein lipase activator NO-1886

    Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next generation sequencing technologies allow to obtain at low cost the genomic sequence information that currently lacks for most economically and ecologically important organisms. For the mallard duck genomic data is limited. The mallard is, besides a species of large agricultural and societal importance, also the focal species when it comes to long distance dispersal of Avian Influenza. For large scale identification of SNPs we performed Illumina sequencing of wild mallard DNA and compared our data with ongoing genome and EST sequencing of domesticated conspecifics. This is the first study of its kind for waterfowl.</p> <p>Results</p> <p>More than one billion base pairs of sequence information were generated resulting in a 16× coverage of a reduced representation library of the mallard genome. Sequence reads were aligned to a draft domesticated duck reference genome and allowed for the detection of over 122,000 SNPs within our mallard sequence dataset. In addition, almost 62,000 nucleotide positions on the domesticated duck reference showed a different nucleotide compared to wild mallard. Approximately 20,000 SNPs identified within our data were shared with SNPs identified in the sequenced domestic duck or in EST sequencing projects. The shared SNPs were considered to be highly reliable and were used to benchmark non-shared SNPs for quality. Genotyping of a representative sample of 364 SNPs resulted in a SNP conversion rate of 99.7%. The correlation of the minor allele count and observed minor allele frequency in the SNP discovery pool was 0.72.</p> <p>Conclusion</p> <p>We identified almost 150,000 SNPs in wild mallards that will likely yield good results in genotyping. Of these, ~101,000 SNPs were detected within our wild mallard sequences and ~49,000 were detected between wild and domesticated duck data. In the ~101,000 SNPs we found a subset of ~20,000 SNPs shared between wild mallards and the sequenced domesticated duck suggesting a low genetic divergence. Comparison of quality metrics between the total SNP set (122,000 + 62,000 = 184,000 SNPs) and the validated subset shows similar characteristics for both sets. This indicates that we have detected a large amount (~150,000) of accurately inferred mallard SNPs, which will benefit bird evolutionary studies, ecological studies (e.g. disentangling migratory connectivity) and industrial breeding programs.</p
    corecore