11 research outputs found

    The Protective Effects of Ciji-Hua’ai-Baosheng II Formula on Chemotherapy-Treated H22 Hepatocellular Carcinoma Mouse Model by Promoting Tumor Apoptosis

    Get PDF
    Ciji-Hua’ai-Baosheng II Formula (CHB-II-F) is a traditional Chinese medical formula that has been shown in clinical practice to relieve side effects of chemotherapy and improve quality of life for cancer patients. In order to understand the mechanism of its protective effects on chemotherapy, mice with transplanted H22 hepatocellular carcinoma were employed in this study. Ninety-two mice were injected subcutaneously with H22 HCC cell suspension into the right anterior armpit. After mice were treated with 5-fluorine pyrimidine (5-FU), they were divided into six groups as untreated group, 5-FU group, 5-FU plus Yangzheng Xiaoji Capsule group and three groups of 5-FU plus different concentrations of CHB-II-F. Twenty mice were euthanized after 7 days of treatment in untreated and medium concentration of CHB-II-F groups and all other mice were euthanized after 14 days of treatment. Herbal components/metabolites were analyzed by UPLC-MS. Tumors were evaluated by weight and volume, morphology of light and electron microscope, and cell cycle. Apoptosis were examined by apoptotic proteins expression by western blot. Four major components/metabolites were identified from serum of mice treated with CHB-II-F and they are β-Sitosterol, Salvianolic acid, isobavachalcone, and bakuchiol. Treatment of CHB-II-F significantly increased body weights of mice and decreased tumor volume compared to untreated group. Moreover, CHB-II-F treatment increased tumor cells in G0-G1 transition instead of in S phase. Furthermore, CHB-II-F treatment increased the expression of pro-apoptotic proteins and decreased the expression anti-apoptotic protein. Therefore, CHB-II-F could improve mice general condition and reduce tumor cell malignancy. Moreover, CHB-II-F regulates apoptosis of tumor cells, which could contribute its protective effect on chemotherapy

    Determination of two acrylates in environmental water by high performance liquid chromatography

    No full text
    A high performance liquid chromatography (HPLC) method was established for the determination of two acrylate substances in environmental water. The optimal chromatographic conditions were determined via exploring the effects of chromatographic column, mobile phase, column temperature, flow rate, detection wavelength and other factors on the separation effect of acrylate substances. Finally, the effective separation of methyl methacrylate and isopropyl methacrylate was realized within 6 min. The retention time of the target compound was used for qualitative analysis and the external standard method was used for quantitative analysis in the experiment. The linear relationship between the two acrylates was good in the range of 0.2-50.0 mg/L, and the correlation coefficient of standard curve was higher than 0.999. The recovery rate was 88.6%-105.3%, the relative standard deviation was 1.7%-4.1%, and the detection limit (LODs) was 0.03-0.05 mg/L. The method was simple, efficient and accurate, and suitable for the determination of acrylates in environmental water samples

    Pore structure and heterogeneity of shale gas reservoirs and its effect on gas storage capacity in the Qiongzhusi Formation

    No full text
    Fine characterization of pore systems and heterogeneity of shale reservoirs are significant contents of shale gas reservoir physical property research. The research on micro-control factors of low productivity in the Qiongzhusi Formation (Fm.) is still controversial. The lower Cambrian Qiongzhusi Fm. in the Qujing, Yunnan was taken as the object to investigate the influence of mineral compositions on the physical properties of the reservoir and the heterogeneity of shale, using the algorithm to improve the characterization ability of Atomic Force Microscopy (AFM). The results showed that: (1) The pores are mainly wedge-shaped pores and V-shaped pores. The pore diameter of the main pore segment ranges from 5 to 10 nm. Mesopores are mainly developed in the Qiongzhusi Fm. shale in Well QD1, with the average pore diameter of 6.08 nm. (2) Microscopic pore structure and shale surface properties show strong heterogeneity, which complicates the micro-migration of shale gas and increases the difficulty of identifying high-quality reservoirs. (3) The increase of clay mineral content intensifies the compaction and then destroys the pores. Conversely, brittle minerals can protect pores. The support and protection of brittle minerals to pores space depend on their content, mechanical properties and diagenesis. (4) Compression damage to pores, large microscopic roughness and surface fluctuations and strong pore structure heterogeneity are the reasons for the poor gas storage capacity of the Qiongzhusi Fm., which will lead to poor productivity in the Qiongzhusi Fm

    Brain gray matter abnormalities in first-episode, treatment-naive children with obsessive-compulsive disorder

    Get PDF
    Although several magnetic resonance imaging (MRI) studies have been conducted in children with obsessive-compulsive disorder (OCD), the brain structural abnormalities in OCD, especially in children, are not yet well characterized. We aimed to identify gray matter (GM) abnormalities in the early stage of pediatric OCD and examine the relationship between these structural abnormalities with clinical characteristics. Examinations of 30 first-episode, treatment-naive pediatric OCD patients without any comorbidities and 30 matched healthy controls (HCs) were performed with 3.0 T magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) was used to conduct voxel-wise tests for group differences in regional gray matter volume (GMV). Compared to HCs, the patient group exhibited more GMV in the bilateral putamen and left orbitofrontal cortex (OFC) and less GMV in the left inferior parietal lobule (IPL). The GMV alternation in the right putamen of OCD patients was positively correlated with Hamilton Anxiety Rating Scale (HAM-A) scores, while the GMV alternation in the left IPL exhibited a trend to negatively correlate with HAM-A scores. Our current results suggest that the GM abnormalities were defined in the early stage of pediatric OCD. Moreover, these findings provided further evidence of brain GM abnormalities that are not only present in the classical fronto–striatal–thalamic circuit but also in the default mode network (DMN), which may represent the interaction of abnormally functional organization of both network in pediatric OCD

    Safety Evaluation of a New Traditional Chinese Medical Formula, Ciji-Hua’ai-Baosheng II Formula, in Adult Rodent Models

    No full text
    Background. Ciji-Hua’ai-Baosheng II Formula (CHB-II-F) is a new traditional Chinese medical formula that has been shown to reduce toxicity and side effects of chemotherapy and increase the probability of cancer patient survival. Whether CHB-II-F is safe as an adjunctive therapy for cancer patients receiving chemotherapy has yet to be determined. Purpose. To evaluate the acute and subchronic toxic effects of CHB-II-F in rodent models. Methods. In acute toxicity test, 24 Kunming mice were divided into 2 groups: untreated control and CHB-II-F 1.05 g/mL (31.44 g/kg) treated group. Treatment was administered to the treated group 3 times a day for 14 days. The overall health, adverse reactions, and mortality rate were documented. In subchronic toxicity test, 96 Sprague-Dawley rats were divided into 4 groups: untreated control, high dose CHB-II-F (H) (26.20 g/kg), medium dose CHB-II-F (M) (13. 10 g/kg), and low dose CHB-II-F (L) (6.55 g/kg) [equal to 24.375 g (dried medicinal herb)/kg] treated groups. Treated groups were given the treatments once a day for 4 weeks. The overall health and mortality rate were recorded every day. Body weight and food consumption were measured once a week. Hematologic and biochemical parameters, organ weights, and histopathologic markers were analyzed after 4 weeks. An additional 2 weeks were given as the treatment recovery period before end-point euthanization, and biochemical analyses were performed. Results. The maximum tolerated dose (MTD) of CHB-II-F on mice was found to be 94.31 g/kg [equal to 351 g (dried medicinal herb)/kg], which is 108 times the human adult dose. In the acute toxicity test, administration of CHB-II-F 31.44 g/kg showed no adverse effect and did not cause mortality. In the subchronic toxicity test, after 4 weeks of treatment, compared to the controls, total cholesterol (TCHO) level, cardiac and splenic indexes, body weights of female rats, and mean corpuscular hemoglobin concentration (MCHC) in the CHB-II-F (H) group were significantly increased; triglyceride (TG) in the CHB-II-F (M) group and liver and splenic indexes in the CHB-II-F (L) group were increased. After the two-week recovery period, biofluid analyses, food consumption, and histopathologic examinations showed no abnormalities. Conclusion. Administration of CHB-II-F had no obvious adverse effect on the overall health of rodent models. A daily maximum dose of less than 94.31 g/kg or 6.55 g/kg CHB-II-F for 4 continuous weeks was considered safe
    corecore