34 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    The Complete Mitochondrial Genome of Ophioglossum vulgatum L. Is with Highly Repetitive Sequences: Intergenomic Fragment Transfer and Phylogenetic Analysis

    No full text
    Many plant mitochondrial (mt) genomes have been sequenced but few in ferns. Ophioglossum vulgatum represents a typical species of fern genus Ophioglossum with medicinal and scientific value. However, its mt genome structure remains to be characterized. This study assembled and annotated the complete O. vulgatum mt genome and presented its structural characters and repeat sequences firstly. Its mt and chloroplast (cp) transfer sequences were explored, and the phylogenetic significance of both mt and cp genomes was also evaluated at the family level. Our results showed that the complete mt genome of O. vulgatum is a single circular genome of 369,673 bp in length, containing 5000 dispersed repetitive sequences. Phylogenetic trees reconstructed from cp and mt genomes displayed similar topologies, but also showed subtle differences at certain nodes. There exist 4818 bp common gene fragments between cp and mt genomes, of which more than 70% are located in tRNA intergenic regions (in mt). In conclusion, we assembled the complete mt genome of O. vulgatum, identified its remarkable structural characters, and provided new insights on ferns. The complementary results derived from mt and cp phylogeny highlighted that some higher taxonomic-level phylogenetic relationships among ferns remain to be resolved

    Osteocyte-specific deletion of Fgfr1 suppresses FGF23.

    No full text
    Increases in fibroblastic growth factor 23 (FGF23 or Fgf23) production by osteocytes result in hypophosphatemia and rickets in the Hyp mouse homologue of X-linked hypophosphatemia (XLH). Fibroblastic growth factor (FGF) signaling has been implicated in the pathogenesis of Hyp. Here, we conditionally deleted FGF receptor 1 (FGFR1 or Fgfr1) in osteocytes of Hyp mice to investigate the role of autocrine/paracrine FGFR signaling in regulating FGF23 production by osteocytes. Crossing dentin matrix protein 1 (Dmp1)-Cre;Fgfr1null/+ mice with female Hyp;Fgfr1flox/flox mice created Hyp and Fgfr1 (Fgfr1Dmp1-cKO)-null mice (Hyp;Fgfr1Dmp1-cKO) with a 70% decrease in bone Fgfr1 transcripts. Fgfr1Dmp1-cKO-null mice exhibited a 50% reduction in FGF23 expression in bone and 3-fold reduction in serum FGF23 concentrations, as well as reductions in sclerostin (Sost), phosphate regulating endopeptidase on X chromosome (PHEX or Phex), matrix extracellular phosphoglycoprotein (Mepe), and Dmp1 transcripts, but had no demonstrable alterations in phosphate or vitamin D homeostasis or skeletal morphology. Hyp mice had hypophosphatemia, reductions in 1,25(OH)2D levels, rickets/osteomalacia and elevated FGF2 expression in bone. Compared to Hyp mice, compound Hyp;Fgfr1Dmp1-cKO-null mice had significant improvement in rickets and osteomalacia in association with a decrease in serum FGF23 (3607 to 1099 pg/ml), an increase in serum phosphate (6.0 mg/dl to 9.3 mg/dl) and 1,25(OH)2D (121±23 to 192±34 pg/ml) levels, but only a 30% reduction in bone FGF23 mRNA expression. FGF23 promoter activity in osteoblasts was stimulated by FGFR1 activation and inhibited by overexpression of a dominant negative FGFR1(TK-), PLCγ and MAPK inhibitors. FGF2 also stimulated the translation of an FGF23 cDNA transfected into osteoblasts via a FGFR1 and PI3K/Akt-dependent mechanism. Thus, activation of autocrine/paracrine FGF pathways is involved in the pathogenesis of Hyp through FGFR1-dependent regulation of FGF23 by both transcriptional and post-transcriptional mechanisms. This may serve to link local bone metabolism with systemic phosphate and vitamin D homeostasis

    The complete chloroplast genome of Ophioglossum vulgatum L. (Ophioglossaceae) and phylogenetic analysis

    No full text
    Ophioglossum vulgatum is a rare and ancient fern. In this study, the chloroplast (cp) genome of O. vulgatum was completely sequenced. The genome size is 138,562 bp, which contains a large single-copy (LSC) region with 99,351 bp, a small single-copy (SSC) region with 19,661 bp, and two inverted repeats (IR) regions of 9,775 bp each. Additionally, the overall GC content is 42.14%. It encodes a total 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The Bayesian phylogenetic tree shows that O. vulgatum and O. californicum formed a monophyletic branch. This study can provide a molecular basis for studying the phylogenetic genomics and population variation of Ophioglossaceae

    Weather pattern conducive to the extreme summer heat in North China and driven by atmospheric teleconnections

    No full text
    Extreme summer heat can have severe socioeconomic impacts and has occurred frequently in North China in recent years, most notably in June–July 2023, when North China experienced the most widespread, persistent, and high-intensity extreme heat on record. Here, typical weather patterns covering North China and its surrounding areas were classified into seven types based on the Cost733class package, and the weather pattern type 4 (T4), characterized by the strengthened ridge and anticyclone anomaly in northeastern China, was found as the most favorable for the occurrence of extreme summer heat in North China (NCSH). Diagnostic and wave activity flux analyses indicate that the Eurasian teleconnection (EAT) pattern from the atmosphere and the Victoria mode (VM) from the ocean are the top two dominant climate drivers of the T4 weather pattern. The empirical models constructed based on the EAT and the VM can effectively simulate the number of days of the T4 weather pattern and the NCSH, respectively. Our results suggest that, with the help of the seasonal forecast from climate models, the EAT and the VM can be used to predict the number of days of the T4 weather pattern and the NCSH for the coming summer, enabling us to protect human health and reduce its socioeconomic impacts through proactive measures in advance

    Complete chloroplast genome of Sphaeropteris brunoniana (Cyatheaceae)

    No full text
    Illumina sequencing was employed to determine the complete chloroplast (cp) genome sequence of Sphaeropteris brunoniana (S. brunoniana), which is a relict fern. The cp genome of S. brunoniana is indeed a circular DNA molecule with 156,659 bp. It includes an inverted repeats (IRs) pair with 24,011 bp each and two single-copy regions with 86,196 bp and 22,441 bp, respectively. Additionally, the genome contains 117 unique genes encoding 85 proteins, 28 tRNAs, four rRNAs. Pseudogenes of ycf66 and trnT-UGU are also detected in this genome.Bayesian phylogenetic tree strongly supports the deduction that S. brunoniana belongs to Cyatheaceae. To date, this is the first cp genome for the genus S. brunoniana

    Osteoblast-specific deletion of Pkd2 leads to low-turnover osteopenia and reduced bone marrow adiposity.

    No full text
    Polycystin-1 (Pkd1) interacts with polycystin-2 (Pkd2) to form an interdependent signaling complex. Selective deletion of Pkd1 in the osteoblast lineage reciprocally regulates osteoblastogenesis and adipogenesis. The role of Pkd2 in skeletal development has not been defined. To this end, we conditionally inactivated Pkd2 in mature osteoblasts by crossing Osteocalcin (Oc)-Cre;Pkd2+/null mice with floxed Pkd2 (Pkd2flox/flox) mice. Oc-Cre;Pkd2flox/null (Pkd2Oc-cKO) mice exhibited decreased bone mineral density, trabecular bone volume, cortical thickness, mineral apposition rate and impaired biomechanical properties of bone. Pkd2 deficiency resulted in diminished Runt-related transcription factor 2 (Runx2) expressions in bone and impaired osteoblastic differentiation ex vivo. Expression of osteoblast-related genes, including, Osteocalcin, Osteopontin, Bone sialoprotein (Bsp), Phosphate-regulating gene with homologies to endopeptidases on the X chromosome (Phex), Dentin matrix protein 1 (Dmp1), Sclerostin (Sost), and Fibroblast growth factor 23 (FGF23) were reduced proportionate to the reduction of Pkd2 gene dose in bone of Oc-Cre;Pkd2flox/+ and Oc-Cre;Pkd2flox/null mice. Loss of Pkd2 also resulted in diminished peroxisome proliferator-activated receptor γ (PPARγ) expression and reduced bone marrow fat in vivo and reduced adipogenesis in osteoblast culture ex vivo. Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP), reciprocally acting as co-activators and co-repressors of Runx2 and PPARγ, were decreased in bone of Oc-Cre;Pkd2flox/null mice. Thus, Pkd1 and Pkd2 have coordinate effects on osteoblast differentiation and opposite effects on adipogenesis, suggesting that Pkd1 and Pkd2 signaling pathways can have independent effects on mesenchymal lineage commitment in bone

    Effects of conditional deletion of <i>Fgfr1</i> in <i>Hyp</i> osteocytes on gross appearance and bone-related gene expressions in 6-week-old mice.

    No full text
    <p>(A) Gross appearance, tail length, and body weight. Compared with control mice, <i>Fgfr1</i><sup>Dmp1-cKO</sup>-null mice had normal gross appearance and body weight. However, <i>Hyp</i> mice showed considerably shorter tail length and lower body weight, compound <i>Hyp</i>;<i>Fgfr1</i><sup>Dmp1-cKO</sup>-null mice displayed intermediate tail length and body weight between control and <i>Hyp</i> mice. Data are mean ± S.D. from 5–6 individual mice. (B and C) Western blot analysis of total Fgf2 and Fgf23 protein levels in bone. A representative Fgf2, Fgf23, and β-Actin gel were shown in upper, middle, and lower panels of B, respectively. The intensity of bands was quantified using Image J software (<a href="http://rsb.info.nih.gov/ij/" target="_blank">http://rsb.info.nih.gov/ij/</a>), and the data shown in C are mean ± S.D. from three independent experiments. Values sharing the same superscript in different groups are not significantly different at <i>P</i><0.05.</p
    corecore