9 research outputs found

    Critical appraising of Hopkinson bar techniques for calibrating high g accelerometers

    No full text
    The Hopkinson pressure bar has been developed to calibrate and assess high g accelerometers’ capacity. The extreme caution is indispensable for performing calibration of severe characteristics, like the bearable super-high overload peak and wide duration of stress. In the paper, the Hopkinson bar calibrating system is being critically appraised. A limiting formula is deduced based on the stress wave theory. It indicates that the overload peak and duration of stress are limited by the elastic limit and wave speed of Hopkinson bar material. Both stress wave configurations in the form of linear ramp and cosine functions were designed theoretically to meet typical calibrating requirements. They were confirmed experimentally with the aid of the pulse shaping technique. Their corresponding calibration characteristics were analysed critically, and it was found that the cosine stress wave can achieve the values of acceleration peak or duration by π/2 times greater than those obtained with the linear stress wave. Finally, some suggestions are proposed for more extreme calibration requirements

    Research and Application of Polycarboxylic Acid Water Reducer with Different Molecular Weight

    Get PDF
    In this paper, a polycarboxylic water reducing agent was synthesized by using Methylallyl polyethylene glycol (HPEG) with molecular weight of 1200, 2400, 2800 and 3400 under the same conditions, C80 concrete tests were performed on these four molecular weight superplasticizers, verify the effect of different molecular weight polycarboxylic acid water reducer in C80 pumping concrete, finally, a kind of low molecular weight polycarboxylic acid water reducer with viscosity reducing effect in high-grade concrete is obtained, which can promote pumping of high-grade concrete

    Research and Application of Polycarboxylic Acid Water Reducer with Different Molecular Weight

    No full text
    In this paper, a polycarboxylic water reducing agent was synthesized by using Methylallyl polyethylene glycol (HPEG) with molecular weight of 1200, 2400, 2800 and 3400 under the same conditions, C80 concrete tests were performed on these four molecular weight superplasticizers, verify the effect of different molecular weight polycarboxylic acid water reducer in C80 pumping concrete, finally, a kind of low molecular weight polycarboxylic acid water reducer with viscosity reducing effect in high-grade concrete is obtained, which can promote pumping of high-grade concrete
    corecore