1,916 research outputs found

    Quasiparticle Levels at Large Interface Systems from Many-body Perturbation Theory: the XAF-GW method

    Full text link
    We present a fully ab initio approach based on many-body perturbation theory in the GW approximation, to compute the quasiparticle levels of large interface systems without significant covalent interactions between the different components of the interface. The only assumption in our approach is that the polarizability matrix (chi) of the interface can be given by the sum of the polarizability matrices of individual components of the interface. We show analytically, using a two-state hybridized model, that this assumption is valid even in the presence of interface hybridization to form bonding and anti-bonding states, up to first order in the overlap matrix elements involved in the hybridization. We validate our approach by showing that the band structure obtained in our method is almost identical to that obtained using a regular GW calculation for bilayer black phosphorus, where interlayer hybridization is significant. Significant savings in computational time and memory are obtained by computing chi only for the smallest sub-unit cell of each component, and expanding (unfolding) the chi matrix to that in the unit cell of the interface. To treat interface hybridization, the full wavefunctions of the interface are used in computing the self-energy. We thus call the method XAF-GW (X: eXpand-chi, A: Add-chi, F: Full wavefunctions). Compared to GW-embedding type approaches in the literature, the XAF-GW approach is not limited to specific screening environments or to non-hybridized interface systems. XAF-GW can also be applied to systems with different dimensionalities, as well as to Moire superlattices such as in twisted bilayers. We illustrate the generality and usefulness of our approach by applying it to self-assembled PTCDA monolayers on Au(111) and Ag(111), and PTCDA monolayers on graphite-supported monolayer WSe2, where good agreement with experiment is obtained.Comment: More detailed proof of Add-Chi for hybridized states added in this versio

    A WOA-based optimization approach for task scheduling in cloud Computing systems

    Get PDF
    Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this work, for the first time, we apply the latest metaheuristics WOA (the whale optimization algorithm) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called IWC (Improved WOA for Cloud task scheduling) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks

    Large-scale Spatial Distribution Identification of Base Stations in Cellular Networks

    Full text link
    The performance of cellular system significantly depends on its network topology, where the spatial deployment of base stations (BSs) plays a key role in the downlink scenario. Moreover, cellular networks are undergoing a heterogeneous evolution, which introduces unplanned deployment of smaller BSs, thus complicating the performance evaluation even further. In this paper, based on large amount of real BS locations data, we present a comprehensive analysis on the spatial modeling of cellular network structure. Unlike the related works, we divide the BSs into different subsets according to geographical factor (e.g. urban or rural) and functional type (e.g. macrocells or microcells), and perform detailed spatial analysis to each subset. After examining the accuracy of Poisson point process (PPP) in BS locations modeling, we take into account the Gibbs point processes as well as Neyman-Scott point processes and compare their accuracy in view of large-scale modeling test. Finally, we declare the inaccuracy of the PPP model, and reveal the general clustering nature of BSs deployment, which distinctly violates the traditional assumption. This paper carries out a first large-scale identification regarding available literatures, and provides more realistic and more general results to contribute to the performance analysis for the forthcoming heterogeneous cellular networks

    Local-to-Global Registration for Bundle-Adjusting Neural Radiance Fields

    Full text link
    Neural Radiance Fields (NeRF) have achieved photorealistic novel views synthesis; however, the requirement of accurate camera poses limits its application. Despite analysis-by-synthesis extensions for jointly learning neural 3D representations and registering camera frames exist, they are susceptible to suboptimal solutions if poorly initialized. We propose L2G-NeRF, a Local-to-Global registration method for bundle-adjusting Neural Radiance Fields: first, a pixel-wise flexible alignment, followed by a frame-wise constrained parametric alignment. Pixel-wise local alignment is learned in an unsupervised way via a deep network which optimizes photometric reconstruction errors. Frame-wise global alignment is performed using differentiable parameter estimation solvers on the pixel-wise correspondences to find a global transformation. Experiments on synthetic and real-world data show that our method outperforms the current state-of-the-art in terms of high-fidelity reconstruction and resolving large camera pose misalignment. Our module is an easy-to-use plugin that can be applied to NeRF variants and other neural field applications. The Code and supplementary materials are available at https://rover-xingyu.github.io/L2G-NeRF/.Comment: arXiv admin note: text overlap with arXiv:2104.06405 by other author

    Dynamic Brain Transformer with Multi-level Attention for Functional Brain Network Analysis

    Full text link
    Recent neuroimaging studies have highlighted the importance of network-centric brain analysis, particularly with functional magnetic resonance imaging. The emergence of Deep Neural Networks has fostered a substantial interest in predicting clinical outcomes and categorizing individuals based on brain networks. However, the conventional approach involving static brain network analysis offers limited potential in capturing the dynamism of brain function. Although recent studies have attempted to harness dynamic brain networks, their high dimensionality and complexity present substantial challenges. This paper proposes a novel methodology, Dynamic bRAin Transformer (DART), which combines static and dynamic brain networks for more effective and nuanced brain function analysis. Our model uses the static brain network as a baseline, integrating dynamic brain networks to enhance performance against traditional methods. We innovatively employ attention mechanisms, enhancing model explainability and exploiting the dynamic brain network's temporal variations. The proposed approach offers a robust solution to the low signal-to-noise ratio of blood-oxygen-level-dependent signals, a recurring issue in direct DNN modeling. It also provides valuable insights into which brain circuits or dynamic networks contribute more to final predictions. As such, DRAT shows a promising direction in neuroimaging studies, contributing to the comprehensive understanding of brain organization and the role of neural circuits.Comment: Accepted to IEEE BHI 202

    Low-dose sevoflurane promoteshippocampal neurogenesis and facilitates the development of dentate gyrus-dependent learning in neonatal rats

    Get PDF
    Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4-6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks

    Optical and Electronic Properties of Femtosecond Laser-Induced Sulfur-Hyperdoped Silicon N+/P Photodiodes

    Get PDF
    Impurity-mediated near-infrared (NIR) photoresponse in silicon is of great interest for photovoltaics and photodetectors. In this paper, we have fabricated a series of n+/p photodetectors with hyperdoped silicon prepared by ion-implantation and femtosecond pulsed laser. These devices showed a remarkable enhancement on absorption and photoresponse at NIR wavelengths. The device fabricated with implantation dose of 1014 ions/cm2 has exhibited the best performance. The proposed method offers an approach to fabricate low-cost broadband silicon-based photodetectors

    Recent Progress in Research on the Effect of Drying on the Color of Processed Fruits and Vegetables

    Get PDF
    Color is an important factor affecting the sensory quality of fruit and vegetable (FV) products. The vibrant and stable color of FV products can give people a good visual enjoyment, which can in turn promote consumers’ appetite and increase the market value of the products. This paper summarizes the types and properties of natural colorants in FV, clarifies the effects of thermal and non-thermal drying technologies and their combination on the color of FV products, reveals the influence mechanism of colorant degradation products on the products’ quality, and reviews the color preservation technologies of dried FV. We hope that this review could provide a theoretical basis for the color preservation and quality enhancement of dried FV products

    A Survey on Approximate Multiplier Designs for Energy Efficiency: From Algorithms to Circuits

    Full text link
    Given the stringent requirements of energy efficiency for Internet-of-Things edge devices, approximate multipliers, as a basic component of many processors and accelerators, have been constantly proposed and studied for decades, especially in error-resilient applications. The computation error and energy efficiency largely depend on how and where the approximation is introduced into a design. Thus, this article aims to provide a comprehensive review of the approximation techniques in multiplier designs ranging from algorithms and architectures to circuits. We have implemented representative approximate multiplier designs in each category to understand the impact of the design techniques on accuracy and efficiency. The designs can then be effectively deployed in high-level applications, such as machine learning, to gain energy efficiency at the cost of slight accuracy loss.Comment: 38 pages, 37 figure

    Diversity of Rotavirus Strains Causing Diarrhea in \u3c5 Years Old Chinese Children: A Systematic Review

    Get PDF
    Background: We conducted a systematic review of the diversity and fluctuation of group A rotavirus strains circulating in China. Methods and Findings: Studies of rotavirus-based diarrhea among children less than 5 years, published in English or Chinese between 1994 and 2012, were searched in PubMed, SinoMed, and CNKI and reviewed by applying standardized algorithms. The temporal and spatial trends of genotyping and serotyping were analyzed using a random-effects model. Ninety-three studies met the inclusion/exclusion criteria and were included in the meta-analysis. Overall, 22,112 and 10,660 rotavirus samples had been examined for G and P types, respectively. The most common G types were G1 (39.5%), G3 (35.6%), G2 (1.3%), and G9 (0.1%). Among P types, P[8] (54.6%) was the predominant type, followed by P[4] (11.1%) and P6 (0.1%). The most common G-P combinations were G3P[8] (32.1%) and G1P[8] (24.5%), followed by G2P[6] (13.2%) and G2P[4] (10.1%). Before 2000, serotype G1 was the predominant strain and accounted for 74.3% of all rotavirus infections; however, since 2000, G3 (45.2%) has been the predominant strain. Rotavirus P types showed little variation over the study period. Conclusion: Despite the variation of serotypes observed in China, the G1, G2, G3, and G4 serotypes accounted for most rotavirus strains in recent decades. These results suggest that Chinese children will be adequately protected with currently available or forthcoming rotavirus vaccines
    corecore