83 research outputs found

    Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in Arabidopsis

    Full text link
    Cell fate determination is a basic developmental process during the growth of multicellular organisms. Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells of the aerial tissues and roots respectively, and they serve as excellent models for understanding the molecular mechanisms controlling cell fate determination and cell morphogenesis. The regulation of trichome and root hair formation is a complex program that consists of the integration of hormonal signals with a large number of transcriptional factors, including MYB and bHLH transcriptional factors. Studies during recent years have uncovered an important role of C2H2 type zinc finger proteins in the regulation of epidermal cell fate determination. Here in this minireview we briefly summarize the involvement of C2H2 zinc finger proteins in the control of trichome and root hair formation in Arabidopsis .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109574/1/jipb12221.pd

    The burden of skin and subcutaneous diseases: findings from the global burden of disease study 2019

    Get PDF
    BackgroundThe small number of existing integrative studies on the global distribution and burden of all types of skin and subcutaneous diseases hinders relevant comparisons.ObjectiveThis study aimed to determine the latest distribution, epidemiological differences, and factors potentially influencing each skin and subcutaneous disease and the policy implications.MethodsData on the skin and subcutaneous diseases were obtained from the Global Burden of Disease Study 2019. The incidence, disability-adjusted life years (DALYs), and deaths due to skin and subcutaneous diseases in 204 countries and regions from 1990 to 2019 were analyzed and stratified by sex, age, geographical location, and sociodemographic index (SDI). The annual age-standardized rate of change in the incidence was obtained to evaluate temporal trends.ResultsOf 4,859,267,654 (95% uncertainty interval [UI], 4,680,693,440–5,060,498,767) new skin and subcutaneous disease cases that were identified, most were fungal (34.0%) and bacterial (23.0%) skin diseases, which accounted for 98,522 (95% UI 75,116–123,949) deaths. The burden of skin and subcutaneous diseases measured in DALYs was 42,883,695.48 (95%UI, 28,626,691.71-63,438,210.22) in 2019, 5.26% of which were years of life lost, and 94.74% of which were years lived with disability. The highest number of new cases and deaths from skin and subcutaneous diseases was in South Asia. Globally, most new cases were in the 0–4-year age group, with skin and subcutaneous disease incidence slightly higher in men than in women.ConclusionFungal infections are major contributors to skin and subcutaneous diseases worldwide. Low–middle SDI states had the highest burden of skin and subcutaneous diseases, and this burden has increased globally. Targeted and effective management strategies based on the distribution characteristics of each country are, thus, required to reduce the burden of skin and subcutaneous diseases

    Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity

    Get PDF
    We report on the development of a blue light-emitting-diode-based incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) instrument for the measurement of the aerosol extinction coefficient at \u1d706=461  nm. With an effective absorption path length of 2.8 km, an optimum detection limit of 0.05  Mm−1 (5×10−10  cm−1) was achieved with an averaging time of 84 s. The baseline drift of the developed spectrometer was about ±0.3  Mm−1 over 2.5 h (1\u1d70e standard deviation). The performance of the system was evaluated with laboratory-generated monodispersed polystyrene latex (PSL) spheres. The retrieved complex refractive index of PSL agreed well with previously reported values. The relative humidity (RH) dependence of the aerosol extinction coefficient was measured using IBBCEAS. The measured extinction enhancement factor values for 200 nm dry ammonium sulphate particles at different RH were in good agreement with the modeled values. Field performance of the aerosol extinction spectrometer was demonstrated at the Hefei Radiation Observatory site

    Gastrodin Rescues Autistic-Like Phenotypes in Valproic Acid-Induced Animal Model

    Get PDF
    Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized by impaired social interaction, restricted/repetitive behavior, and anxiety. GABAergic dysfunction has been postulated to underlie these autistic symptoms. Gastrodin is widely used clinically in the treatment of neurological disorders and showed to modulate GABAergic signaling in the animal brain. The present study aimed to determine whether treatment with gastrodin can rescue valproic acid (VPA) induced autistic-like phenotypes, and to determine its possible mechanism of action. Our results showed that administration of gastrodin effectively alleviated the autistic-associated behavioral abnormalities as reflected by an increase in social interaction and decrement in repetitive/stereotyped behavior and anxiety in mice as compared to those in untreated animals. Remarkably, the amelioration in autistic-like phenotypes was accompanied by the restoration of inhibitory synaptic transmission, α5 GABAA receptor, and type 1 GABA transporter (GAT1) expression in the basolateral amygdala (BLA) of VPA-treated mice. These findings indicate that gastrodin may alleviate the autistic symptoms caused by VPA through regulating GABAergic synaptic transmission, suggesting that gastrodin may be a potential therapeutic target in autism

    Linkage Mapping of Stem Saccharification Digestibility in Rice

    Get PDF
    Rice is the staple food of almost half of the world population, and in excess 90% of it is grown and consumed in Asia, but the disposal of rice straw poses a problem for farmers, who often burn it in the fields, causing health and environmental problems. However, with increased focus on the development of sustainable biofuel production, rice straw has been recognized as a potential feedstock for non-food derived biofuel production. Currently, the commercial realization of rice as a biofuel feedstock is constrained by the high cost of industrial saccharification processes needed to release sugar for fermentation. This study is focused on the alteration of lignin content, and cell wall chemotypes and structures, and their effects on the saccharification potential of rice lignocellulosic biomass. A recombinant inbred lines (RILs) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 271 molecular markers for quantitative trait SNP (QTS) analyses was used. After association analysis of 271 markers for saccharification potential, 1 locus and 4 pairs of epistatic loci were found to contribute to the enzymatic digestibility phenotype, and an inverse relationship between reducing sugar and lignin content in these recombinant inbred lines was identified. As a result of QTS analyses, several cell-wall associated candidate genes are proposed that may be useful for marker-assisted breeding and may aid breeders to produce potential high saccharification rice varieties

    Specific Release of Bacteriochlorophylls B800 of LH2 from Rhodobacter azotoformans Induced by Sodium Dodecyl Sulfate

    Get PDF
    The release behaviors of bacteriochlorophylls of peripheral light-harvesting complex LH2 from Rhodobacter azotoformans induced by sodium dodecyl sulfate (SDS) were investigated using absorption spectroscopy. The results indicated that bacteriochlorophylls of B800 band are released from their binding sites and transformed into free bacteriochlorophylls by incubating LH2 sample in 10 mmol.L-1 Tris-HCl (pH 8.0) buffer containing SDS of low concentration at room temperature. However, the bacteriochlorophylls of B850 band are not released. The dynamics of B800 release and free BChl formation induced by 0.08% (w/V) SDS can be well fitted by the monoexponential model. The rate constant of B800 release is nearly equal to that of free BChls formation. The release of both B800 and B850 of LH2 can be induced by high concentration SDS, simultaneously. The bacteriochlorophylls of B800 band can be completely transformed into free BChls, but not for B850. Although both of their release processes show monoexponential models in 1% SDS solution, the release rate constant of B850 is remarkably lower than that of B800 and close to that of free BChls formation.国家自然科学基金(No. 30970068)、国家科技基础条件平台建设(No. 2005DKA21209)、厦门大学近海海洋环境科学国家重点实验室高级访问学者基 金(No. MELRS0907)和山西省回国留学人员科研(No. 200713)资助项目

    Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Get PDF
    Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW) pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs) from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield

    2012) Enzymatic saccharification and ethanol fermentation of reed pretreated with liquid hot

    No full text
    Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW) pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs) from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180 • C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50 • C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield
    corecore