6,860 research outputs found

    Experimental study on nanoparticle deposition in straight pipe flow

    Get PDF
    Loss of the number of nanoparticles within pipe may lead to significant change of particle number distribution, total mass concentration and particles mean size. The experiments of multiple dispersion aerosol particles ranging from 5.6 nm to 560 nm in straight pipe are carried out using a fast mobility particle sizer. The particle size number distribution, total number concentrations, geometric mean size and volume are acquired under different pipe lengths and Reynolds numbers. The results show lengthening the pipe and strengthening the turbulence can promote the particle deposition process. The penetration efficiency of smaller particle is lower than the larger one, so the particle mean size increases in the process of deposition

    Tidal capture of an asteroid by a magnetar: FRB-like bursts, glitch and anti-glitch

    Full text link
    Recently, remarkable anti-glitch and glitch accompanied by bright radio bursts of the Galactic magnetar SGR J1935+2154 were discovered. These two infrequent temporal coincidences between the glitch/anti-glitch and the fast radio burst (FRB)-like bursts reveal their physical connection of them. Here we propose that the anti-glitch/glitch and FRB-like bursts can be well understood by an asteroid tidally captured by a magnetar. In this model, an asteroid is tidally captured and disrupted by a magnetar. Then, the disrupted asteroid will transfer the angular momentum to the magnetar producing a sudden change in the magnetar rotational frequency at the magnetosphere radius. If the orbital angular momentum of the asteroid is parallel (or anti-parallel) to that of the spinning magnetar, a glitch (or anti-glitch) will occur. Subsequently, the bound asteroid materials fall back to the pericenter and eventually are accreted to the surface of the magnetar. Massive fragments of the asteroid cross magnetic field lines and produce bright radio bursts through coherent curvature radiation. Our model can explain the sudden magnetar spin changes and FRB-like bursts in a unified way.Comment: 6 pages, 1 figure, published by MNRAS https://doi.org/10.1093/mnras/stad158

    Image Data Analytics to Support Engineers’ Decision-Making

    Get PDF
    Robots such as drones have been leveraged to perform structure health inspection such as bridge inspection. Big data of inspection videos can be collected by cameras mounted on drones. In this project, we develop image analysis algorithms to support bridge engineers to analyze the big video data. Bridge engineers define the region of interest initially, then the algorithm retrieves all related regions in the video, which facilitates the engineers to inspect the bridge rather than exhaustively check every frame of the video. To perform this task, we propose a Multi-scale Siamese Neural Network. The network is initially trained by one-shot learning and is fine-tuned iteratively with human in the loop. Our neural network is evaluated on three bridge inspection videos with promising performances

    Power Allocation and Time-Domain Artificial Noise Design for Wiretap OFDM with Discrete Inputs

    Full text link
    Optimal power allocation for orthogonal frequency division multiplexing (OFDM) wiretap channels with Gaussian channel inputs has already been studied in some previous works from an information theoretical viewpoint. However, these results are not sufficient for practical system design. One reason is that discrete channel inputs, such as quadrature amplitude modulation (QAM) signals, instead of Gaussian channel inputs, are deployed in current practical wireless systems to maintain moderate peak transmission power and receiver complexity. In this paper, we investigate the power allocation and artificial noise design for OFDM wiretap channels with discrete channel inputs. We first prove that the secrecy rate function for discrete channel inputs is nonconcave with respect to the transmission power. To resolve the corresponding nonconvex secrecy rate maximization problem, we develop a low-complexity power allocation algorithm, which yields a duality gap diminishing in the order of O(1/\sqrt{N}), where N is the number of subcarriers of OFDM. We then show that independent frequency-domain artificial noise cannot improve the secrecy rate of single-antenna wiretap channels. Towards this end, we propose a novel time-domain artificial noise design which exploits temporal degrees of freedom provided by the cyclic prefix of OFDM systems {to jam the eavesdropper and boost the secrecy rate even with a single antenna at the transmitter}. Numerical results are provided to illustrate the performance of the proposed design schemes.Comment: 12 pages, 7 figures, accepted by IEEE Transactions on Wireless Communications, Jan. 201

    Inflating hollow nanocrystals through a repeated Kirkendall cavitation process.

    Get PDF
    The Kirkendall effect has been recently used to produce hollow nanostructures by taking advantage of the different diffusion rates of species involved in the chemical transformations of nanoscale objects. Here we demonstrate a nanoscale Kirkendall cavitation process that can transform solid palladium nanocrystals into hollow palladium nanocrystals through insertion and extraction of phosphorus. The key to success in producing monometallic hollow nanocrystals is the effective extraction of phosphorus through an oxidation reaction, which promotes the outward diffusion of phosphorus from the compound nanocrystals of palladium phosphide and consequently the inward diffusion of vacancies and their coalescence into larger voids. We further demonstrate that this Kirkendall cavitation process can be repeated a number of times to gradually inflate the hollow metal nanocrystals, producing nanoshells of increased diameters and decreased thicknesses. The resulting thin palladium nanoshells exhibit enhanced catalytic activity and high durability toward formic acid oxidation

    Ginsenosides are novel naturally-occurring aryl hydrocarbon receptor ligands.

    Get PDF
    The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of structurally diverse chemicals. In this study, we examined the ability of a series of ginsenosides extracted from ginseng, a traditional Chinese medicine, to bind to and activate/inhibit the AHR and AHR signal transduction. Utilizing a combination of ligand and DNA binding assays, molecular docking and reporter gene analysis, we demonstrated the ability of selected ginsenosides to directly bind to and activate the guinea pig cytosolic AHR, and to stimulate/inhibit AHR-dependent luciferase gene expression in a recombinant guinea pig cell line. Comparative studies revealed significant species differences in the ability of ginsenosides to stimulate AHR-dependent gene expression in guinea pig, rat, mouse and human cell lines. Not only did selected ginsenosides preferentially activate the AHR from one species and not others, mouse cell line was also significantly less responsive to these chemicals than rat and guinea pig cell lines, but the endogenous gene CYP1A1 could still be inducted in mouse cell line. Overall, the ability of these compounds to stimulate AHR signal transduction demonstrated that these ginsenosides are a new class of naturally occurring AHR agonists

    Hollow Gaussian Schell-model beam and its propagation

    Full text link
    In this paper, we present a new model, hollow Gaussian-Schell model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams.Comment: 13pages, 2 figure

    Ghrelin contributes to protection of hepatocellular injury induced by ischaemia/reperfusion

    Full text link
    Background & Aims Ghrelin, a gut hormone with pleiotropic effects, may act as a protective signal in parenchymal cells. We investigated the protective effects of ghrelin on hepatocytes after ischaemia/reperfusion (I/R). Methods Hepatic injury was assessed by measurement of plasma alanine aminotransferase ( ALT ) and lactate dehydrogenase ( LDH ), histological analysis, and TUNEL assay. Effects of exogenous ghrelin and ghrelin receptor gene deletion on I/R induced injury of liver were evaluated. Results Ischaemia/reperfusion induced a profound injury to hepatocytes. This was accompanied by elevations in plasma ALT and LDH . Pretreatment with ghrelin significantly reduced elevations in plasma ALT and LDH , and attenuated tissue damage induced by hepatic I/R in mice. Hepatic injury induced by I/R was more pronounced in ghrelin receptor gene null mice. Ghrelin administration blocked the up‐regulation of AMP ‐activated protein kinase ( AMPK ) activity induced by hepatic I/R. Conclusions This study demonstrates that ghrelin contributes to the cytoprotection during hepatic I/R.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106759/1/liv12286.pd

    Disitamab Vedotin plus anti-PD-1 antibody show good efficacy in refractory primary urethral cancer with low HER2 expression: a case report

    Get PDF
    Primary urethral carcinoma (PUC) has a low incidence, but with high aggressiveness. Most of the patients are found in late stage, with poor prognosis. At present, chemotherapy is still the main treatment for metastatic PUC, but it has limited effect. Here, we report a case of metastatic PUC with low HER2 expression that developed disease progression after multiline therapy including chemotherapy, programmed death-1 (PD-1) inhibitors and multi-targeted receptor tyrosine kinase (RTK) inhibitor. After receiving Disitamab Vedotin(a novel antibody drug conjugate, ADC) and toripalimab (a PD-1 inhibitor), the patient achieved persistent PR, and the PFS exceeded 12 months up to now. Our report indicates that, despite the patient of metastatic PUC has low expression of HER2, it is still possible to benefit from Disitamab Vedotin combined with PD-1 inhibitor, which may reverse the drug resistance of PD-1 inhibitor and chemotherapy to a certain extent. But larger sample studies are needed to determine the efficacy of this treatment strategy and its impact on survival
    • 

    corecore