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Loss of the number of nanoparticles within pipe may lead to significant change of 
particle number distribution, total mass concentration and particles mean size. The 
experiments of multiple dispersion aerosol particles ranging from 5.6 nm to 560 nm 
in straight pipe are carried out using a fast mobility particle sizer. The particle size 
number distribution, total number concentrations, geometric mean size and volume 
are acquired under different pipe lengths and Reynolds numbers. The results show 
lengthening the pipe and strengthening the turbulence can promote the particle de-
position process. The penetration efficiency of smaller particle is lower than the 
larger one, so the particle mean size increases in the process of deposition. 
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Introduction 

Nanoparticles suspended in pipes have lots of applications, such as enhanced heat 

transfer in heat exchangers, toxic particle transport in human lung contamination, pollutant 

particle emission from coal combustion in power plants and the rail pipe of a moving car [1-

9]. For badly stable suspension of micro-sized particles, nanoparticles suspended inside a pipe 

may coagulate or deposit on the wall due to various mechanisms that may act combination 

with Brown motion or fluid turbulence. The phenomenon of coagulation is characterized by 

the formation of particle cluster, i. e. particles are in contract with each other and cohesion 

take places, then the clusters grow up. Many researchers investigated the coagulation effect of 

particle by Brownian dynamics simulation [10-12].
 
The processing of coagulation causes the 

particle clusters to grow up, and then the large clusters are more prone to breakage than that 

of small clusters. As far as particle deposition concerned, there are five main mechanisms 

which may lead to particle losses on the surface of a pipe, i. e., gravitation, thermophoresis, 

electrostatics, inertial impaction and diffusion. The diffusion, inertial impaction and turbu-

lence (for particle larger than 100 nm) are most important for deposition process [13, 14].  

In recent years the transport, deposition and coagulation of nanoparticles in pipe are of 

increasing concern since nanoparticles are more toxic and diffusible than larger particles, while its 

utilization may improve the therapeutic delivery efficiency of the drugs. The analyses of the forces 
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acting on nanaoparticle in flow and its deposition processes have been made by many researchers 

[15-17]. In the research of particle deposition, the penetration efficiency through a pipe ηN was de-

fined as the ratio of downstream number concentration to upstream concentration. The penetration 

efficiency has been studied by some researches, for example, in bends [18] and a rotating curved 

pipe [19], respectively. However, the researches on the penetration efficiency experimentally are 

limited. Therefore, the aim of the study was to investigate the particles ranging from 5.6 nm to 560 

nm number concentration losses under different conditions using the FMPS3091. The experimen-

tal results are compared with particle loss models for laminar flow. This mechanism is important 

when determining particle losses in aerosol sampling and transport system. 

Experimental techniques 

A sketch of the experimental setup is shown in fig. 1.The flow under consideration 

is a particle-laden pipe-flow. A cylindrical pressure vessel with diameter of 1.5 m and high of 

2 m is used to support the nanoparticle-laden gas. The nanoparticles are produced by incense 

burning, which was injected by fans B into the pressure vessel and placed twenty four hours 

for mixture uniform in the vessel. The pipe is made from plexiglass. The measurement is car-

ried out in the laboratory with temperature of 20 °C. Fans A is used to transport filtered gas 

into the pressure vessel. The sampling particles were multiple dispersion aerosol. A sampling 

frequency is 1 Hz and continuously for 1 minute in each measurement. The sample flow rate 

is 0.01 m
3
 per minute, which is 1.47 m/s corresponding to the pipe inner diameter of 12 mm. 

So the experimental velocity must be larger than this value. The geometric mean size of par-

ticles is near 80 nm, and the total number concentration per cubic centimeter is 10
4
. 

 

Figure 1. A sketch of the experimental apparatus 

Results and discussion 

The Brownian motion is the main mechanism leading to deposition on pipe surface 

of nanoparticle-laden multiphase laminar flow (when Re < 2300). A comparison of the pene-

tration efficiencies ηN through pipes is shown in fig. 2(a) as a function of the particle diameter 

Dp. In this graph, the data points with error bars are the measured penetration efficiencies 

through pipes for l/d = 375 and Re = 1700, where l is the length and d is the inner diameter of 

the pipe. The previous similar condition experimental results are shown using triangle. The 

lines represent the penetration efficiencies through the straight pipe predicted by Gormley and 

Kennedy [20]. Because of only concerning Brownian diffusion the results show higher pene-
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tration efficiencies than experimental for ignoring surface effect [17]. So the results of fig. 

2(a) show the rationality results of this paper. The penetration efficiency through the pipe is 

found to increase with increasing particle size. The losses efficiencies for particles below 

20 nm are larger than 10% due to the higher diffusivity of smaller particles. 

The pipe length and flow type effects on penetration efficiency with different par-

ticle size have been shown in fig. 2(b). Particles are larger than 100 nm which diffusivity af-

fected both by Brownian motion and turbulence. The change of the deposition with particle 

diameter is weak in this size range. Most of particles larger than 200 nm have high penetration 

efficiency (>90%) with l/d = 375. But the change of penetration efficiency is obvious with the 

pipe length. As the pipe length increasing, the loss of particles in pipe surface increases com-

paring l/d = 375 to l/d = 500 in fig. 2(b). Turbulence will enhance deposition, especially for 

larger particles in long pipe. 

 

Figure 2. Experimental results of penetration efficiencies according to particle size 

Conclusions 

Experiments have been made under different operating conditions with FMPS3091. 

It is found that particle losses for nanoparticle-laden multiphase pipe flow are affected by par-

ticle diameter, pipe length and flow pattern. Maximal losses are found for particles size small-

er than 30 nm. The penetration model of Gormley described particle smaller than 50 nm in 

laminar flow losses well. The mechanism may find many potential applications in the future 

for thermal science. 
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