184 research outputs found

    Improved Dynamic Mechanical Properties of Modified PTFE Jet Penetrating Charge with Shell

    No full text
    A modified polytetrafluoroethylene (PTFE) was produced by the addition of copper powder to improve the mechanical properties and penetration performance of conventional PTFE. Static compression and split Hopkinson pressure bar test analyses verified the improved mechanical properties of the modified PTFE. Shaped charge structure was designed with by applying modified PTFE to liner material, the formation of modified PTFE jet and the process of jet penetrating shell charge were researched by numerical simulation. As compared to Teflon, results demonstrated that the mechanical properties of the modified PTFE have been significantly improved to achieve greater consistency of jet formation, stronger penetration, broadened pore size, and increased damage performance in the absence of a charge shell explosion

    On-load field prediction of surface-mounted PM machines considering nonlinearity based on hybrid field model

    Get PDF
    Analytical models show weakness in dealing with saturation in surface-mounted permanent-magnet machines. A hybrid field model (HFM) integrating complex permeance method (CPM) and lumped parameter magnetic circuit model (LPMCM) is proposed in this paper for predicting the on-load magnetic field considering nonlinearity effect of stator lamination. In the proposed model, the CPM calculates the field in the air gap and magnet regions, while LPMCM calculates the magnetic potential distribution inside the iron reflecting nonlinearity effect. The equivalent current sheet is obtained to replace such distribution on the stator bore. Moreover, local magnetic saturation of tooth tip is also transformed into equivalent current on the tooth surface. A solving procedure is proposed to calculate the equivalent current and guarantee the convergence. Compared with CPM, the proposed model considering the saturation effect significantly improves the prediction accuracy of the on-load performance. The HFM predictions are compared with finite element and experimental results. The excellent agreement validates its effectiveness

    Effect of Intensity Modulator Extinction on Practical Quantum Key Distribution System

    Full text link
    We study how the imperfection of intensity modulator effects on the security of a practical quantum key distribution system. The extinction ratio of the realistic intensity modulator is considered in our security analysis. We show that the secret key rate increases, under the practical assumption that the indeterminable noise introduced by the imperfect intensity modulator can not be controlled by the eavesdropper.Comment: 6 pages, 5 figures. EPJD accepte

    Distributed phase-covariant cloning with atomic ensembles via quantum Zeno dynamics

    Full text link
    We propose an interesting scheme for distributed orbital state quantum cloning with atomic ensembles based on the quantum Zeno dynamics. These atomic ensembles which consist of identical three-level atoms are trapped in distant cavities connected by a single-mode integrated optical star coupler. These qubits can be manipulated through appropriate modulation of the coupling constants between atomic ensemble and classical field, and the cavity decay can be largely suppressed as the number of atoms in the ensemble qubits increases. The fidelity of each cloned qubit can be obtained with analytic result. The present scheme provides a new way to construct the quantum communication network.Comment: 5 pages, 4 figure

    Body-centered-cubic Ni and its magnetic properties

    Get PDF
    The body-centered-cubic (bec) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bec Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of 0.52 \uc2\ub1 0.08 \uce\ubcB/atom. The cubic magneto-crystalline anisotropy of bec Ni is determined to be +4.0 \uc3\u97 105 ergs \uc2\ub7 cm-3, as opposed to -5.7 \uc3\u97 10 4 ergs \uc2\ub7 cm-3 for the naturally occurring face-centered-cubic (fcc) Ni. This sharp contrast in the magnetic anisotropy is attributed to the different electronic band structures between bec Ni and fcc Ni, which are determined using angle-resolved photoemission with synchrotron radiation

    A determination of electroweak parameters from Z0→μ+μ- (γ)

    Full text link

    A Metaheuristic Framework for Bi-level Programming Problems with Multi-disciplinary Applications

    No full text
    Bi-level programming problems arise in situations when the decision maker has to take into account the responses of the users to his decisions. Several problems arising in engineering and economics can be cast within the bi-level programming framework. The bi-level programming model is also known as a Stackleberg or leader-follower game in which the leader chooses his variables so as to optimise his objective function, taking into account the response of the follower(s) who separately optimise their own objectives, treating the leader’s decisions as exogenous. In this chapter, we present a unified framework fully consistent with the Stackleberg paradigm of bi-level programming that allows for the integration of meta-heuristic algorithms with traditional gradient based optimisation algorithms for the solution of bi-level programming problems. In particular we employ Differential Evolution as the main meta-heuristic in our proposal.We subsequently apply the proposed method (DEBLP) to a range of problems from many fields such as transportation systems management, parameter estimation and game theory. It is demonstrated that DEBLP is a robust and powerful search heuristic for this class of problems characterised by non smoothness and non convexity

    Measurement of Z0 decays to hadrons, and a precise determination of the number of neutrino species

    Get PDF
    We have made a precise measurement of the cross section for e+e--->Z0-->hadrons with the L3 detector at LEP, covering the range from 88.28 to 95.04 GeV. From a fit to the Z0 mass, total width, and the hadronic cross section to be MZ0=91.160 +/- 0.024 (experiment) +/-0.030(LEP) GeV, [Gamma]Z0=2.539+/-0.054 GeV, and [sigma]h(MZ0)=29.5+/-0.7 nb. We also used the fit to the Z0 peak cross section and the width todetermine [Gamma]invisible=0.548+/-0.029 GeV, which corresponds to 3.29+/-0.17 species of light neutrinos. The possibility of four or more neutrino flavors is thus ruled out at the 4[sigma] confidence level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28683/3/0000500.pd

    A measurement of the Z0 leptonic partial widths and the vector and axial vector coupling constants

    Get PDF
    We have measured the partial widths of the Z0 into lepton pairs, and the forward-backward charge asymmetry for the process e+e--->[mu]+[mu]- using the L3 detector at LEP. We obtain an average [Gamma]ll of 83.0+/-2.1+/-1.1 MeV.From this result and the asymmetry measurement, we extract the values of the vector and axial vector couplings of the Z0 to leptons: grmv=-0.066-0.027+0.046 and grmA= -0.495-0.007+0.007.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28666/3/0000483.pd
    corecore