
This is a repository copy of On-load field prediction of surface-mounted PM machines 
considering nonlinearity based on hybrid field model.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/146797/

Version: Accepted Version

Article:

Wu, L.J., Li, Z., Wang, D. et al. (3 more authors) (2019) On-load field prediction of 
surface-mounted PM machines considering nonlinearity based on hybrid field model. IEEE
Transactions on Magnetics, 55 (3). 8100911. ISSN 0018-9464 

https://doi.org/10.1109/TMAG.2018.2890244

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


On-Load Field Prediction of Surface-Mounted PM Machines 
Considering Nonlinearity Based on Hybrid Field Model 

 
L. J. Wu1, Senior Member IEEE, Zhaokai Li1, Dong Wang2, Member IEEE, Hao Yin1, Xiaoyan Huang1, Member 

IEEE, and Z. Q. Zhu3, Fellow IEEE 
 

1College of Electrical Engineering, Zhejiang University, Hangzhou, 310027 China 
2National Key Laboratory of Science and Technology on Vessel Integrated Power System 

Naval Univ. of Engineering, 430000, Wuhan, China 
3Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, U.K. 

 
Analytical models show weakness in dealing with saturation in surface-mounted PM (SPM) machines. A hybrid field model (HFM) 

integrating complex permeance method (CPM) and lumped parameter magnetic circuit model (LPMCM) is proposed in this paper for 
predicting the on-load magnetic field considering nonlinearity effect of stator lamination. In the proposed model, the CPM calculates the 
field in the airgap and magnet regions, while LPMCM calculates the magnetic potential distribution inside iron reflecting nonlinearity 
effect. The equivalent current sheet is obtained to replace such distribution on the stator bore. Moreover, local magnetic saturation of 
tooth-tip is also transformed into equivalent current on the tooth surface. A solving procedure is proposed to calculate the equivalent 
current and guarantee the convergence. Compared with CPM, the proposed model considering saturation effect significantly improves 
the prediction accuracy of the on-load performance. The HFM predictions are compared with finite element (FE) and experimental 
results. The excellent agreement validates its effectiveness. 
 

Index Terms—Analytical model, magnetic equivalent circuit, complex permeance, saturation effect, SPM machines. 
 

I. INTRODUCTION 
ERMANENT-MAGNET (PM) machines become 
increasingly popular benefiting from their high torque 

density and efficiency [1]. Therefore, researchers have made 
great effort in developing accurate and fast tools for analysis, 
design and optimization of such machines. Although numerical 
methods are accurate, it is very time-consuming and provides 
little straightforward physical insight into machine design [2]. 
On the contrary, many analytical models are available to 
quickly reveal the physical relationship between the geometry 
of PM machines and their performance [3]-[9]. They are 
accurate for machines with linear materials. However, machine 
designers usually push work point of iron material to or slightly 
over the knee point of its BH curve in order to achieve better 
torque density. Hence, the analytical models lack of high 
accuracy for these machines because of neglecting nonlinearity 
effect.  

The preference of both high computational speed and 
accuracy motivates the integration of analytical models with 
numerical methods. There are many potential candidates for 
such integration. For analytical models, complex permeance 
model is a good option. Zhu et al. analytically calculated the 
field in the airgap/magnet regions for slotless PM machines in 
[3]-[4]. The stator slotting effect can be taken into account by 
conformal mapping. Typical examples can be found in [5], 
which gives calculation of complex permeance function to 
consider slotting effect on both radial and circumferential 
components of flux density. It is simple and fast because 
Schwarz–Christoffel (SC) transformation is required only once, 
but it neglects the deformation of magnets and path for airgap 

field prediction. To eliminate this error, exact conformal 
mapping based on SC Toolbox can be used to accurately 
calculate the magnetic field in the SPM machines [7]-[8]. SC 
Toolbox was developed to construct a SC map from the 
machine geometry at first and then numerically evaluate the 
position of PM equivalent current in the canonical domain at 
every rotor position [10]. Hence, it is very time-consuming. On 
the other hand, the LPMCM is a good option for numerical 
method since both finite element and finite difference methods 
requires large calculation and are not preferred. The LPMCM 
is fast and very effective for the path in the iron, but often shows 
difficulty for the path in the air. It is because the flux tube in the 
air has complicated shape, which can be varying with the rotor 
position [11]-[12]. It is particularly difficult for the airgap and 
magnet regions in SPM machines, in which the surface of 
magnet does not show equal potential. The area of LPMCM’s 
weakness is exactly the strong side of analytical models. 
Therefore, the integration of CPM and LPMCM can provide 
both high computational speed and accuracy.  

In order to account for iron nonlinearity, some analytical 
models are modified to account for the magnetic potential 
distribution in the iron. Dalal et al. obtained the airgap field 
distribution by solving Laplace/quasi-Poissonian equations in 
six regions, of which the stator core permeability is assumed a 
linear function of the load angle [13]. However, such linear 
function is found by using finite element method (FEM) and the 
whole stator iron is assumed the constant permeability. On the 
other hand, LPMCM is often used to analyze the nonlinear iron 
core. From the LPMCM solution, the airgap length and slot 
opening are modified to represent the magnetic potential drops 
of the stator [14]-[16]. Then the complex permeance based on 
the modified airgap and slot opening was introduced to account 
for both saturation effect and slotting effect. Nevertheless, these 
models in [14]-[16] are time-consuming due to the calculation 
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of the saturated complex permeance using SC transformation at 
every rotor position.    

In addition, equivalent virtual current is powerful in magnetic 
field calculation. It has been widely used to replace the PM and 
calculate the electromagnetic performance in many PM 
machines such as IPM machine [17], transverse flux machine 
[18], and eccentric SPM machine [19]. For the saturated SPM 
machine, Hanic et al. combined the conformal mapping and 
LPMCM to analyze the airgap field [20]-[21] by using 
equivalent currents. The SC mapping in [20] and [21] 
transforms the slotted domain with equivalent current sheets of 
magnets into slotless domain. The field distribution due to 
winding current and magnet equivalent currents placed at the 
new mapped positions is calculated by using Hague’s solution. 
It is then transformed back into original slotted domain. In [22], 
the CPM instead of exact conformal mapping in [20]-[21] is 
combined with LPMCM to predict the open-circuit field of 
SPM machines, but the analysis of on-load field is not included 
as well as the consideration of tooth-tip saturation, which is 
common and important in electric machines. Hence, this paper 
will investigate on-load field of SPM machines accounting for 
slot flux leakage. Most importantly, the tooth-tip saturation will 
be analyzed in this paper. 

A HFM integrating CPM and LPMCM is presented for the 
on-load field prediction in SPM machines with tooth-tips. Such 
combination is based on the equivalence between the magnetic 
potential drop in the stator and virtual current along the stator 
bore. In order to calculate the virtual current representing 
nonlinearity effect, a solving procedure based on Newton-
Raphson method is developed to guarantee the convergence in 
the iteration. Both FE analysis and experiment are implemented 
to verify the proposed model. 

II. HYBRID FIELD MODEL 
Assumptions are made to ease modeling: 1) PM has a linear 

recoil line; 2) the end effect is neglected; 3) the rotor iron is 
infinitely permeable. As for some cases that rotor iron 
saturation cannot be neglected, the model should be 
reconstructed. 

Fig. 1 shows the schematic view of SPM machine; whose 
stator iron has a nonlinear permeability. When different level of 
excitation from PM and winding current is applied, there will 
be different work point of stator iron on the BH curve, viz. 
different relative permeability ȝr_stator. Since the analytical 
model is not applicable to the nonlinear model in Fig. 1, it has 
to be equivalently transformed into an infinitely permeable 
model, whose magnetic potential drop in the stator becomes 
zero. In order to compensate the magnetic potential drop in the 
stator of infinitely permeable model, virtual equivalent current 
is introduced to represent the nonlinearity effect, as shown in 
Fig. 2. It is noted that the virtual current at the slot opening is 
used to consider the saturation of stator yoke and teeth body 
while the virtual current at the teeth surface is presented to show 
the tooth-tip saturation. Fig. 3 shows the justification of 
introducing the virtual current. Along the loop 1 in Fig.3(a), the 
Ampere’ law can be applied as: 

 
1

1 1 0
airgap

tip airgapL
F H dl   (1) 

where Ftip1 is the magnetic potential drop across the tooth tip 1, 
Lairgap1 is the airgap path of loop 1, and Hairgap1 is the magnetic 
field along Lairgap1. 

In Fig.3(b), the Ampere’ law can give:  
 

1
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airgap
airgap tlL

H dl i   (2) 

In order to keep Hairgap1 unchanged, the equivalent current 
should satisfy: 
 1-tl tipi F  (3) 

Similarly, 
 2-tr tipi F  (4) 
where itl and itr are the equivalent currents at the left and right 
sides of tooth shoe. 

Along the loop 3 in Fig.3(a), according to the Ampere’ law: 
 

3
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airgap
tooth yoke tooth airgap wL

F F F H dl NI     (5) 

where Ftooth1, Ftooth2, and Fyoke are the magnetic potential drops 
across the tooth 1, tooth 2 and yoke, respectively, Iw is the 
winding current and N is the number of turns. 

For the same loop in Fig.3(b), the Ampere’ law can give: 
 

3
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H dl NI i i i      (6) 

In order to keep Hairgap3 unchanged, the equivalent current at 
the slot opening should be: 
    1 2ss tooth yoke tooth tl tri F F F i i       (7) 

Hence, the infinitely permeable model can be analytically 
solved considering iron nonlinearity by equivalent currents. 
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Fig. 1. Schematic view of SPM machine. 
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Fig. 2. Hybrid field model of slotted SPM machine considering nonlinearity 
effect under on-load condition. 
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Fig. 3 The Ampere loops in (a) Initial nonlinear model and (b) Equivalent 
model with equivalent current. 



A. Equivalent Current Representing Stator Nonlinearity 
The equivalent current, which represents nonlinearity effect, 

is the keypoint in the HFM. It is calculated from the magnetic 
potential distribution of LPMCM. Fig. 4 shows that the 
magnetic reluctances representing the nonlinear property of the 
stator iron are connected to establish a magnetic network. V1, 
V2,āāā,V(6Qs) are the node magnetic potential in the LPMCM, 
where Qs is the slot number. The airgap flux ĳj flowing into the 
stator is expressed as  
  

j

j sr s
s

B R ds    (8) 

where sj is the area of the slot or tooth on the stator bore, j is the 
index of the slot and tooth (j=1,2,āāā,2Qs), Rs is the stator bore 
radius, and Bsr(Rs) is the radial flux density on the stator bore.  

According to KCL, the node magnetic potential is obtained 
by: 
 ( ) ( ) 0f    TV Aȁ A V E Aĭ  (9) 
where ĭ is the branch flux matrix which includes ĳj for the 
fluxes into stator and 0 for the rest branches. A, ȁ, and V are 
the matrixes of the incidence, branch permeance, and node 
magnetic potential, respectively. The permeance in ȁ is 
calculated using the following equation [11]-[12]: 
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where pr, psr, and pst are the permeance of the rectangular 
material, radial sector material and tangential sector material, 
respectively. ȝ is the permeability of the material and lef is the 
active length. a is the width of cross-sectional area and b is the 
length along the flux direction in the rectangle. Į0, R1 and R2 are 
the central angle, outer radius and inner radius of the sector. It 
can be seen that pr is suitable to calculate the tooth permeance 
in the LPMCM while psr and pst is intended for the radial and 
tangential permeance of stator yoke, tooth shoe, slot, and slot-
opening. E is the branch MMF matrix calculated by winding 
current [11]  
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where E1, E2,āāā, E2Qs are the values of branch MMF which 
forms E and iw1, iw2, ,āāā, iw(Qs-1) are the winding current.  
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Fig. 4. Equivalent magnetic network of the stator. 

The equivalent currents are illustrated in Fig. 5. The 
equivalent current on the kth slot opening is obtained by: 
 2( )ssk wk m mi i V V     (12) 
where issk and iwk are the equivalent and winding currents in the 
kth slot, respectively, k is the index of tooth and slot, 
k=1,2,āāā,Qs, Vm and Vm+2 are the magnetic potentials of nodes 
at the left and right sides of the kth slot opening. It is noted that 
Vm+2 and Vm in the right side of (12) are calculated from the 
nonlinear model while issk and iwk in the left side of (12) are 
intended for the infinitely permeable model. 

Considering the nonlinearity effect in the tooth-tip, the 
virtual current on the tooth shoe should be added in the 
infinitely permeable model. Besides, the virtual current value 
on the tooth shoe should be equal to the magnetic potential drop 
along the tooth shoe in order to produce the same airgap field. 
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where itlk and itrk are the equivalent currents at the left and right 
sides of the kth tooth shoe, Vm-1 is the magnetic potential on the 
node in the middle of the kth tooth top, Vm-2 and Vm are the 
magnetic potential on the nodes at the left and right sides of the 
kth tooth-tip, respectively. Then (12)-(13) can be expressed in 
the matrix form: 
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where Css, Ctl, Ctr are the constant matrixes calculated from 
(12)-(13) and 
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Fig. 5. Illustration of equivalent current sheet. 

B. Slotted Airgap Field Solution 
Since the equivalent current is introduced to represent the 

nonlinearity effect, the stator iron becomes infinitely permeable 
as shown in Fig. 2. Thus, the analytical model with the 
assumption of infinitely permeable iron is suitable to calculate 
the magnetic field of SPM machines. As for the slotting effect, 
CPM based on conformal mapping is used to calculate the 
slotted airgap field from the slotless airgap field [5].  

 sr r r i

s r r i

B B B
B B B


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 
 

 
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 (19) 

where Bsr and BsĮ are the radial and circumferential slotted 
airgap flux density, respectively. Ȝr and Ȝi are the real and 
imaginary components of complex permeance, whose 
calculation are described in [22]. Br and BĮ are the radial and 
circumferential slotless airgap flux density, which are obtained 
by superposition of the field components produced by the PM, 
winding and equivalent currents with infinitely permeable iron, 
Fig. 6. 
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where Bmr and BmĮ are the radial and circumferential flux 
density components due to the PM, Bwr and BwĮ are the radial 
and circumferential flux density components due to the winding 
current, Bsat_r and Bsat_Į are the radial and circumferential flux 
density components due to the equivalent current. Į and ș are 
the stator and rotor angular positions, respectively, and 
ș=Ȧrt+ș0, where ș0 is the initial position of the rotor and Ȧr is 
the mechanical angular velocity. 
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Fig. 6. Hybrid field model of slotless SPM machine. 
 

The solution of the slotless airgap field due to PMs 
neglecting nonlinearity effect was derived in [22]. Therefore, 
this paper only gives the final expressions of radial and 
circumferential airgap flux density components: 
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where KB(n), fBr(r), and fBș(r) are given in [22]. 
As for the magnetic field produced by stator current 

including winding current and equivalent current of saturation 
neglecting saturation effect, the governing Laplacian equation 
in the airgap region is 
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and the boundary condition is [4] 
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where Rr is the rotor yoke surface radius and Js is the resultant 
of winding and equivalent currents, which can be expressed as 
Fourier series from Fig. 5 
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where b0 is the slot-opening width and t0 is the tooth top width. 

By solving the governing Laplacian equation with the 
boundary condition, the radial and circumferential flux density 
components due to the stator current can be given by: 
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where Fv, Gv, and Ksov are 
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C. Convergent Solving Procedure  
In the proposed HFM, the airgap field solution and 

calculation of equivalent current depend on each other. 
Therefore, a solving procedure is proposed to iteratively 
calculate the equivalent current as well as airgap field and 
guarantee the convergence in one loop. The basic idea is to 
incorporate the airgap analytical solution into the procedure of 
solving the LPMCM. Therefore, in the LPMCM, the airgap flux 
ĳj flowing into the stator is rederived from (8)  
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where gssk, gtlk, and gtrk are calculated from (19)-(31) and  
 1 2( ) ( ) ( ) ( )

sj ss j ss j ssQ js g s g s g s   ssG   (33) 

 1 2( ) ( ) ( ) ( )
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The equivalent current Iss+Iw, Itl, Itr in (32) can be calculated 
from the magnetic potential distribution of LPMCM according 
to (14). Thus ĳj in (32) is a function of the magnetic potential 
distribution V. 
  ( ) ( ) ( ) ( )j j j j m js s s s   ss ss tl tl tr trG C G C +G C V  (37) 

It can also be expressed in the matrix form as 

     ss ss tl tl rl tr mĭ R C R C R C V ĭ  (38) 
where 
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Thus, according to (9), the general solution for LPMCM can 
be obtained by  

  ( )
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T
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m
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 (43) 

It can be seen from (43) that only branch permeance matrix 
ȁ depends on the magnetic potential distribution. Hence only 
one loop is required to solve the ‘new’ LPMCM using BH 
curves. Fig. 7 shows the general flowchart to calculate the 
equivalent current and airgap flux density. In fact, the essence 
of HFM is to replace the inaccurate modeling of airgap 
reluctance in LPMCM with virtual reluctance (Rss, Rtl, Rtr) and 
flux source (fm) from the airgap field solution of CPM. 
Meanwhile, the airgap magnetic network of HFM is also a 
Norton equivalent circuit compared to the original LPMCM, 
which proves the validity of the proposed replacement. 

D. Speed and Accuracy in Calculation 
The tradeoff between speed and accuracy in the calculation 

of electromagnetic field is an unavoidable issue for researchers 
to analyze. Thus it is necessary to compare and investigate the 
speed and accuracy of CPM, FEM, and HFM in the airgap field 
prediction. CPM neglects the core saturation and requires no 
iteration process at any rotor position. Therefore, it is fastest but 
also least accurate compared with other methods. On the 
contrary, FEM shows the highest accuracy in predicting the 
magnetic field and therefore is often employed to verify the 
accuracy of analytical model for the electrical machines [17]-
[21]. However, it is also the most time-consuming method 
because it need to iteratively solve a Nfem×Nfem nonlinear matrix, 
where Nfem represents the number of FE nodes and is always 
very large for accurate calculation. As for HFM, it combines the 
advantage of both CPM and LPMCM with high speed and great 
accuracy. Due to considering nonlinear property of iron core, 
the accuracy of magnetic field prediction is greatly improved 
compared with CPM, especially when the machine is highly 
saturated. Besides, the calculation time of HFM is theoretically 
shorter than FEM because HFM only solves a much smaller 
Nmcm×Nmcm matrix, where Nmcm represents the number of nodes 
in the LPMCM.  
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Fig. 7. General flowchart of calculation procedure. 

III. ELECTROMAGNETIC PERFORMANCE  
The main flux of a coil can be calculated from the airgap field 

distribution: 
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where Įi and Ĳ are the circumferential position and coil pitch of 
such coil.  

By summing the flux linkages associated with all coils from 
the same phase, the flux linkage ȥph is derived as: 
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where Nc and ț are the number of turns of each coil and the coil 
number of each phase, respectively. l represents the leakage 

flux in all slots and slot openings associated with the phase, 
which is obtained from the flux distribution in LPMCM. Ȗ is the 
layer of the tangential magnetic reluctance in one slot. llij and 
lr(i+Ĳ)j are the tangential fluxes in the slot that can cover the 
phase coil [22]. It is also specified in Fig. 4. 

The induced voltage is defined as the derivative of the flux 
linkage with respect to time under on-load condition: 

      = , , .ph
ph

d
U ph A B C

dt


   (46) 

The electromagnetic torque is determined by the Arkkio’s 
method. It improves Maxwell’s stress tensor method, whose 
accuracy is affected by integration path in the airgap. Therefore, 
based on the predicted airgap flux density, the total torque is 
computed by integrating over the surface in the airgap [24]: 
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where r and Į is the radius and angle of the integration surface 
element in the airgap. rs and rr are the outer and inner radius of 
the integration surface.  

IV. FE AND EXPERIMENTAL VALIDATION  
In order to verify the proposed model, the FE analysis have 

been carried out on two integer-slot (8-pole/48-slot) and 
fractional-slot (8-pole/9-slot) SPM machines and the 
experiment has been done on the latter. It is noted that only 2-
D FE analysis are performed and therefore the end effect is 
neglected. The BH curves of iron laminations in the nonlinear 
FEM for both machines is shown in Fig. 8 while the relative 
permeability of iron in the linear FEM is 1000000. The 
differences between nonlinear and linear FEM exhibit the 
nonlinearity effect. TABLE I gives the major parameters of 
these two machines. Fig. 9 illustrates that the 8-pole/48-slot 
machine is operated in the BLAC mode while the other is in the 
BLDC mode. Fig. 10 gives the field distribution of both SPM 
machines in the nonlinear FEM, which also reveals the 
saturation level in the iron. Fig. 11 presents the stator and rotor 
of 8-pole/9-slot prototype, which is used for experimental 
validation. 

 
Fig. 8. B-H curves of the iron of both machines.  
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TABLE I 
MAIN PARAMETERS OF PROPOSED SPM MACHINES 

Parameter 8-pole/48-slot 8-pole/9-slot Unit 

Stator outer radius 75 50 mm 
Stator inner radius 45 26.5 mm 
Airgap length 0.75 1 mm 
Magnet thickness 4.5 3 mm 
Rotor outer radius 44.25 25.5 mm 
Shaft radius 17.5 17.5 mm 
Stator yoke height 8 4.4 mm 
Active length 75 50 mm 
Slot opening 1.5 2 mm 
Tooth body width 3.72 8.7 mm 
Pole-arc to pole-pitch ratio 1 1  
Magnet remanence 1.26 1.2 T 
Relative recoil permeability 1.07 1.05  

Magnetization Parallel Parallel  

Rated speed 1500 400 rpm 
Number of pole pairs 4 4  

Number of slots 48 9  

Rated current (peak) 25 10 A 

Lamination material WG35WW300 Transil300  
Operation mode BLAC BLDC  

 

 
(a) 

 
(b) 

Fig. 9. Current waveforms of the SPM machines at rated load. (a) 8-pole/48-
slot. (b) 8-pole/9-slot. 

       
    (a)                                                 (b) 

Fig. 10. Flux density distribution of SPM machines at rated current in the 
nonlinear FEM. (a) 8-pole/48-slot. (b) 8-pole/9-slot. 
 

          
                         (a)                                                              (b) 
Fig. 11. 8-pole/9-slot prototype machine. (a) stator (b) rotor. 

Under the rated load, the armature reaction field increases the 
saturation level and HFM becomes more advantageous. Figs. 
12-13 show the calculated equivalent current sheet for both 
machines. Then the airgap field distribution of both machines 
can be predicted by HFM and compared with CPM and FEM, 
Figs. 14-15. It can be seen that HFM can accurately predict the 
airgap flux density while CPM always overestimates due to 
neglecting nonlinearity effect, especially for the radial airgap 
flux density facing the fourth tooth of 8-pole/48-slot machine 
and facing the seventh tooth with 8-pole/9-slot machine. The 
linear FEM results are also higher than nonlinear FEM results, 
which shows the influence of iron nonlinearity on the airgap 
field. Moreover, the average radial airgap flux densities, facing 
the fourth tooth for the 48-slot machine and facing the seventh 
tooth for the 9-slot machine, are calculated by HFM, CPM, and 
FEM at different peak current, as shown in Figs. 16-17. The 
radial component of HFM predicted flux density agrees well 
with nonlinear FEM predictions at different peak current while 
the CPM predicted flux densities are much higher than those 
predicted by nonlinear FEM but agree well with linear FEM 
results, as can be seen in both machines. Even under open-
circuit condition, the nonlinearity effect exists in both machines 
to influence the airgap field [22]. 

 
Fig. 12. Equivalent current sheet at stator bore of 8-pole/48-slot SPM machine. 

 
Fig. 13. Equivalent current sheet at stator bore of 8-pole/9-slot SPM machine. 
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(a) 

 
(b) 

Fig. 14. Comparison of on-load flux densities computed by HFM, CPM, and 
FE method at the middle airgap of 8-pole/48-slot SPM machine under rated 
load (Ipeak=25A): (a) radial and (b) circumferential. 

 
(a) 

 
 (b) 

Fig. 15. Comparison of on-load airgap flux densities computed by HFM, 
CPM, and FE method at the middle airgap of 8-pole/9-slot SPM machine 
under rated load (Ipeak=10A): (a) radial and (b) circumferential. 

 
Fig. 16. Variation of average radial airgap flux density facing the fourth tooth 
with peak current of 8-pole/48-slot SPM machine. 

 
Fig. 17. Variation of average radial airgap flux density facing the seventh 
tooth with peak current of 8-pole/9-slot SPM machine. 

As can be seen in Figs. 18-19, HFM has high accuracy for 
predicting the induced voltage waveform at rated current while 
CPM exhibits large errors for both machines. The induced 
voltage of 8-pole/9-slot machine from Fig. 19 has high surge 
voltage, because the current waveform in the simulation is ideal 
and has unsmooth changes. Figs. 20-21 compare the amplitude 
and phase of the fundamental induced voltage predicted by 
HFM, CPM and FE Method at different peak current. Again, 
HFM shows much higher accuracy than CPM. Such advantage 
of HFM is attribute to its inclusion of flux leakage and 
nonlinearity effect. Besides, when comparing the nonlinear and 
linear FEM results from Figs 18-21, it can be seen that the iron 
nonlinearity has significant influence on the induced voltage.  

 
Fig. 18. HFM, CPM, and FE predicted induced voltage waveforms of 8-
pole/48-slot SPM machine at rated current.  
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Fig. 19. HFM, CPM, and FE predicted induced voltage waveforms of 8-
pole/9-slot SPM machine at rated current.  

 
(a) 

 
(b) 

Fig. 20. Variation of amplitude and phase of the fundamental induced voltage 
with peak current of 8-pole/48-slot SPM machine: (a) amplitude and (b) phase.  

 
(a) 

 
(b) 

Fig. 21. Variation of amplitude and phase of the fundamental induced voltage 
with peak current of 8-pole/9-slot SPM machine: (a) amplitude and (b) phase. 
 

As shown in Figs. 22-23, the torque waveform predicted by 
HFM agrees well with FE prediction at rated current while 
CPM overestimates it for both machines. The measured torque 
of 8-pole/9-slot machine also confirms the high accuracy of 
HFM in Fig. 23. Moreover, as shown in Figs. 24-25, the average 
torque predicted by HFM achieves excellent accuracy at 
different load current while the error of CPM prediction 
gradually becomes larger with the increase of load. It can also 
be seen from the nonlinear and linear FEM results in Figs. 22-
25 that the iron nonlinearity will decrease the torque of SPM 
machines  

 
Fig. 22. Torque waveforms of 8-pole/48-slot SPM machine at rated current. 

 
Fig. 23. Torque waveform of 8-pole/9-slot machine at rated current. 
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Fig. 24. Variation of average torque with peak current of 8-pole/48-slot SPM 
machine. 

 
Fig. 25. Variation of average torque with peak current of 8-pole/9-slot SPM 
machine. 

In order to compare the computational speed of HFM, CPM, 
and nonlinear FEM, their calculation time in one electric period 
for both machines is compared and anlyzed in TABLE II and 
TABLE III. It is noted that FEM resluts of both machines are 
solved in Ansys Maxwell while CPM and HFM calculations are 
performed in Matlab. The main parameter setting of simulation 
is shown in TABLE IV. It can be seen that CPM is the fastest 
while FEM is the slowest for both machines. HFM calculation 
runs at least ten times faster than FEM simulation for both 
machines. This advantage will significantly improve the 
efficiency of machine design. 

 
TABLE II  

CALCULATION TIME OF 8-POLE/48-SLOT SPM MACHINE 
              Current (A) 
         Time (s) 
Model 

0 5 10 15 20 25 30 35 40 

CPM 1.1 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 
HFM 50.3 42.4 41.5 38.5 38.0 44.3 48.2 44.3 43.8 

FEM, nonlinear 537 534 579 577 537 535 543 550 541 
 

TABLE III 
CALCULATION TIME OF 8-POLE/9-SLOT SPM MACHINE  

              Current (A) 
          Time (s) 
Model 

0 2 4 6 8 10 12 

CPM 1.8 1.8 1.7 1.6 1.6 1.7 1.7 
HFM 44.9 44.9 43.3 42.2 43.7 44.2 45.0 

FEM, nonlinear 650 671 637 679 672 652 657 
 
 
 
 

 
TABLE IV 

MAIN PARAMETER SETTING OF SIMULATION  

Machine model Airgap segment Simulation steps node  

8-pole/ 
48-slot  

CPM 
720 180 

0 
HFM 120 
FEM 17965 

8-pole/ 
9-slot 

CPM 
480 240 

0 
HFM 90 
FEM 33035 

 

V. CONCLUSION 
A hybrid field model integrating CPM and LPMCM has been 

developed for analyzing SPM machines considering 
nonlinearity effect and tooth-tips. The nonlinearity of the stator 
yoke and tooth body is represented by equivalent current on the 
slot opening while the tooth-tip saturation is accounted for by 
additional equivalent current sheet on the tooth surface. Based 
on such equivalent currents, the permeability of the iron can be 
regarded as infinite and superposition theory can be applied to 
calculate the on-load airgap field produced by PMs, winding 
and equivalent currents. In order to calculate the equivalent 
current, a solving procedure is introduced to guarantee the 
convergence. Then the airgap field distribution, induced voltage 
and torque are all obtained from HFM. HFM has higher 
accuracy than CPM in predicting the airgap field and 
electromagnetic performance when the iron material in the 
machine works around the nonlinear region. It is demonstrated 
by both FE analysis and experiment. Based on HFM, other 
machines such as inset PM machines and IPM machines will be 
investigated in the future. 
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