2,291 research outputs found

    Extract of Zanthoxylum bungeanum maxim seed oil reduces hyperlipidemia in hamsters fed high-fat diet via activation of peroxisome proliferator-activated receptor γ

    Get PDF
    Purpose: To investigate the anti-hyperlipidaemic effect of extract of Zanthoxylum bungeanum Maxim. seed oil (EZSO) on high-fat diet (HFD)-induced hyperlipidemic hamsters.Methods: Following feeding with HFD for 30 days, hyperlipidemic hamsters were intragastrically treated with EZSO for 60 days. Serum levels of triglyceride (TG), total cholesterol (TC), low-density-lipoproteincholesterol (LDL-C), nitric oxide (NO) and malondialdehyde (MDA) were analyzed. Protein expression and location of peroxisome proliferator-activated receptor γ (PPARγ) in liver were determined by Western blot and immunohistochemical assays, respectively.Results: EZSO at 5 and 10 g/kg significantly reduced levels of TG by 26 and 23 % (p < 0.05), TC by 19 % (p < 0.01) and 13 % (p < 0.01), LDL-C by 18 % (p < 0.05) and 21 % (p < 0.01), NO by 15 % (p < 0.01) and 31 % (p < 0.01), and MDA by 16 % (p < 0.05) and 30 % (p < 0.01), respectively, in serum of hyperlipidemic hamsters. However, EZSO did not show significant effect on HDL-C level in serum. Furthermore, EZSO at 5 and 10 g/kg markedly promoted protein expression of PPARγ by 71 % (p < 0.05) and 102 % (p < 0.01) in liver tissue of hyperlipidemic hamsters. EZSO also notably increased the content of PPARγ protein in the nucleus of liver cells of hyperlipidemic hamsters.Conclusion: These findings suggest that EZSO can reduce hyperlipidemia and improve oxidative stress in hyperlipidemic hamsters through activation of PPARγ, and that EZSO is a promising novel hypolipidemic health product.Keywords: Zanthoxylum bungeanum, Peroxisome proliferator activated receptor γ, Hyperlipidemia, Hamster, High-fat die

    Validity and reliability of the Chinese critical thinking disposition inventory

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Genomic Arrangement of Regulons in Bacterial Genomes

    Get PDF
    Regulons, as groups of transcriptionally co-regulated operons, are the basic units of cellular response systems in bacterial cells. While the concept has been long and widely used in bacterial studies since it was first proposed in 1964, very little is known about how its component operons are arranged in a bacterial genome. We present a computational study to elucidate of the organizational principles of regulons in a bacterial genome, based on the experimentally validated regulons of E. coli and B. subtilis. Our results indicate that (1) genomic locations of transcriptional factors (TFs) are under stronger evolutionary constraints than those of the operons they regulate so changing a TF's genomic location will have larger impact to the bacterium than changing the genomic position of any of its target operons; (2) operons of regulons are generally not uniformly distributed in the genome but tend to form a few closely located clusters, which generally consist of genes working in the same metabolic pathways; and (3) the global arrangement of the component operons of all the regulons in a genome tends to minimize a simple scoring function, indicating that the global arrangement of regulons follows simple organizational principles

    Electrically Tunable Excitonic Light Emitting Diodes based on Monolayer WSe2 p-n Junctions

    Full text link
    Light-emitting diodes are of importance for lighting, displays, optical interconnects, logic and sensors. Hence the development of new systems that allow improvements in their efficiency, spectral properties, compactness and integrability could have significant ramifications. Monolayer transition metal dichalcogenides have recently emerged as interesting candidates for optoelectronic applications due to their unique optical properties. Electroluminescence has already been observed from monolayer MoS2 devices. However, the electroluminescence efficiency was low and the linewidth broad due both to the poor optical quality of MoS2 and to ineffective contacts. Here, we report electroluminescence from lateral p-n junctions in monolayer WSe2 induced electrostatically using a thin boron nitride support as a dielectric layer with multiple metal gates beneath. This structure allows effective injection of electrons and holes, and combined with the high optical quality of WSe2 it yields bright electroluminescence with 1000 times smaller injection current and 10 times smaller linewidth than in MoS2. Furthermore, by increasing the injection bias we can tune the electroluminescence between regimes of impurity-bound, charged, and neutral excitons. This system has the required ingredients for new kinds of optoelectronic devices such as spin- and valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional electro-optic modulators.Comment: 13 pages main text with 4 figures + 4 pages upplemental material

    Paniya Voices: A Participatory Poverty and Health Assessment among a marginalized South Indian tribal population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In India, indigenous populations, known as <it>Adivasi </it>or Scheduled Tribes (STs), are among the poorest and most marginalized groups. 'Deprived' ST groups tend to display high levels of resignation and to lack the capacity to aspire; consequently their health perceptions often do not adequately correspond to their real health needs. Moreover, similar to indigenous populations elsewhere, STs often have little opportunity to voice perspectives framed within their own cultural worldviews. We undertook a study to gather policy-relevant data on the views, experiences, and priorities of a marginalized and previously enslaved tribal group in South India, the Paniyas, who have little 'voice' or power over their own situation.</p> <p>Methods/design</p> <p>We implemented a Participatory Poverty and Health Assessment (PPHA). We adopted guiding principles and an ethical code that promote respect for Paniya culture and values. The PPHA, informed by a vulnerability framework, addressed five key themes (health and illness, well-being, institutions, education, gender) using participatory approaches and qualitative methods. We implemented the PPHA in five Paniya colonies (clusters of houses in a small geographical area) in a <it>gram panchayat </it>(lowest level decentralized territorial unit) to generate data that can be quickly disseminated to decision-makers through interactive workshops and public forums.</p> <p>Preliminary findings</p> <p>Findings indicated that the Paniyas are caught in multiple 'vulnerability traps', that is, they view their situation as vicious cycles from which it is difficult to break free.</p> <p>Conclusion</p> <p>The PPHA is a potentially useful approach for global health researchers working with marginalized communities to implement research initiatives that will address those communities' health needs in an ethical and culturally appropriate manner.</p

    Uptake and transport of novel amphiphilic polyelectrolyte-insulin nanocomplexes by caco-2 cells - towards oral insulin

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright SpringerPurpose: The influence of polymer architecture on cellular uptake and transport across Caco-2 cells of novel amphiphilic polyelectrolyte-insulin nanocomplexes was investigated. Method: Polyallylamine (PAA) (15 kDa) was grafted with palmitoyl chains (Pa) and subsequently modified with quaternary ammonium moieties (QPa). These two amphiphilic polyelectrolytes (APs) were tagged with rhodamine and their uptake by Caco-2 cells or their polyelectrolyte complexes (PECs) with fluorescein isothiocyanate-insulin (FITC-insulin) uptake were investigated using fluorescence microscopy. The integrity of the monolayer was determined by measurement of transepithelial electrical resistance (TEER). Insulin transport through Caco-2 monolayers was determined during TEER experiments. Result: Pa and insulin were co-localised in the cell membranes while QPa complexes were found within the cytoplasm. QPa complex uptake was not affected by calcium, cytochalasin D or nocodazole. Uptake was reduced by co-incubation with sodium azide, an active transport inhibitor. Both polymers opened tight junctions reversibly where the TEER values fell by up to 35 % within 30 minutes incubation with Caco-2 cells. Insulin transport through monolayers increased when QPa was used (0.27 ngmL-1 of insulin in basal compartment) compared to Pa (0.14 ngmL-1 of insulin in basal compartment) after 2 hours. Conclusion: These APs have been shown to be taken up by Caco-2 cells and reversibly open tight cell junctions. Further work is required to optimise these formulations with a view to maximising their potential to facilitate oral delivery of insulin.Peer reviewe

    Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice

    Get PDF
    Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass

    PEDRo: A database for storing, searching and disseminating experimental proteomics data

    Get PDF
    Abstract Background Proteomics is rapidly evolving into a high-throughput technology, in which substantial and systematic studies are conducted on samples from a wide range of physiological, developmental, or pathological conditions. Reference maps from 2D gels are widely circulated. However, there is, as yet, no formally accepted standard representation to support the sharing of proteomics data, and little systematic dissemination of comprehensive proteomic data sets. Results This paper describes the design, implementation and use of a Proteome Experimental Data Repository (PEDRo), which makes comprehensive proteomics data sets available for browsing, searching and downloading. It is also serves to extend the debate on the level of detail at which proteomics data should be captured, the sorts of facilities that should be provided by proteome data management systems, and the techniques by which such facilities can be made available. Conclusions The PEDRo database provides access to a collection of comprehensive descriptions of experimental data sets in proteomics. Not only are these data sets interesting in and of themselves, they also provide a useful early validation of the PEDRo data model, which has served as a starting point for the ongoing standardisation activity through the Proteome Standards Initiative of the Human Proteome Organisation

    Self-assembled foam-like graphene networks formed through nucleate boiling

    Get PDF
    Self-assembled foam-like graphene (SFG) structures were formed using a simple nucleate boiling method, which is governed by the dynamics of bubble generation and departure in the graphene colloid solution. The conductivity and sheet resistance of the calcined (400 degrees C) SFG film were 11.8 S.cm(-1) and 91.2 Omega square(-1), respectively, and were comparable to those of graphene obtained by chemical vapor deposition (CVD) (similar to 10 S.cm(-1))(.) The SFG structures can be directly formed on any substrate, including transparent conductive oxide (TCO) glasses, metals, bare glasses, and flexible polymers. As a potential application, SFG formed on fluorine-doped tin oxide (FTO) exhibited a slightly better overall efficiency (3.6%) than a conventional gold electrode (3.4%) as a cathode of quantum dot sensitized solar cells (QDSSCs)open232
    corecore