5,424 research outputs found

    Evaluation of social personalized adaptive E-Learning environments : end-user point of view

    Get PDF
    The use of adaptations, along with the social affordances of collaboration and networking, carries a great potential for improving e-learning experiences. However, the review of the previous work indicates current e-learning systems have only marginally explored the integration of social features and adaptation techniques. The overall aim of this research, therefore, is to address this gap by evaluating a system developed to foster social personalized adaptive e-learning experiences. We have developed our first prototype system, Topolor, based on the concepts of Adaptive Educational Hypermedia and Social E-Learning. We have also conducted an experimental case study for the evaluation of the prototype system from different perspectives. The results show a considerably high satisfaction of the end users. This paper reports the evaluation results from end user point of view, and generalizes our method to a component-based evaluation framework

    Top quark FCNC couplings at future circular hadron electron colliders

    Full text link
    A study of single top quark production via flavor changing neutral current interactions at tqγtq\gamma vertices is performed at future circular hadron electron collider. The signal cross sections for the processes epeW±q+Xe^{-}p\to e^{-}W^{\pm}q+X and epeW±bq+Xe^{-}p\to e^{-}W^{\pm}bq+X in the collision of electron beam with energy Ee=E_e= 60 GeV and proton beam with energy Ep=E_p= 50 TeV are calculated. In the analysis, the invariant mass distributions of three jets reconstructing top quark mass, requiring one b-tagged jet and other two jets reconstructing the WW mass are used to count signal and background events after all selection cuts. The upper limits on the anomalous flavor changing neutral current tqγtq\gamma couplings are found to be λq<\lambda_q < 0.01 at future circular hadron electron collider for Lint=100L_{int}=100 fb1^{-1} with the fast simulation of detector effects. Signal significance depending on the couplings λq\lambda_q is analyzed and an enhanced sensitivity is found to the branching ratio BR(tqγt\to q\gamma) at the future circular hadron electron collider when compared to the current experimental results.Comment: 11 pages, 4 Figures, 4 Tables, to appear in Phys. Rev.

    Emergency crowd simulation for outdoor environments

    Get PDF
    Cataloged from PDF version of article.We simulate virtual crowds in emergency situations caused by an incident, such as a fire, an explosion, or a terrorist attack. We use a continuum dynamics-based approach to simulate the escaping crowd, which produces more efficient simulations than the agent-based approaches. Only the close proximity of the incident region, which includes the crowd affected by the incident, is simulated. We use a model-based rendering approach where a polygonal mesh is rendered for each agent according to the agent's skeletal motion. To speed up the animation and visualization, we employ an offline occlusion culling technique. We animate and render a pedestrian model only if it is visible according to the static visibility information computed. In the pre-processing stage, the navigable area is decomposed into a grid of cells and the from-region visibility of these cells is computed with the help of hardware occlusion queries. (C) 2009 Elsevier Ltd. All rights reserved

    The effect of initial pH and retention time on boron removal by continuous electrocoagulation process

    Get PDF
    In this study, factors influencing boron removal via the continuous electrocoagulation process were investigated at lab-scale. Different influent pH values (4, 5, 6, 7.45 and 9) and contact times (10, 25, 50 and 100 min) were examined as variable parameters. Plate-type aluminium electrodes with 5 mm distance between them were used. All the experiments were conducted in continuous mode and the current density was kept constant at 5 A throughout the whole experimental period. The initial boron concentration was selected to be 1000 mg L-1. The first set of experiments concerning the influence of the influent pH showed that the highest boron removal (67%) was obtained at pH=6 since it was the optimal pH for boron precipitation through aluminium borate formation. Under the constant current density of the study and with the initial pH adjusted to 6, increasing the duration of the electrocoagulation process from 10 to 100 min resulted in raising the boron removal from 45 to 79% during the second set of experiments. The greater duration of the electrocagulation process enabled higher aluminium dissolution, thus allowing the existence of a higher number of coagulants within the reactor. Moreover, it enhanced boron precipitation because of the longer contact time between the boron ions and the coagulants. After optimizing significant parameters such as the influent pH and the electrocagulation duration, the continuous electrocoagulation process was found to constitute an effective alternative for boron removal

    Enhanced phase-sensitive SSFP reconstruction for fat-water separation in phased-array acquisitions

    Get PDF
    Purpose: To propose and assess a method to improve the reliability of phase-sensitive fat–water separation for phased-array balanced steady-state free precession (bSSFP) acquisitions. Phase-sensitive steady-state free precession (PS-SSFP) is an efficient fat–water separation technique that detects the phase difference between neighboring bands in the bSSFP magnetization profile. However, large spatial variations in the sensitivity profiles of phased-array coils can lead to noisy phase estimates away from the coil centers, compromising tissue classification. Materials and Methods: We first perform region-growing phase correction in individual coil images via unsupervised selection of a fat-voxel seed near the peak of each coil's sensitivity profile. We then use an optimal linear combination of phase-corrected images to segregate fat and water signals. The proposed method was demonstrated on noncontrast-enhanced SSFP angiograms of the thigh, lower leg, and foot acquired at 1.5T using an 8-channel coil. Individual coil PS-SSFP with a common seed selection for all coils, individual coil PS-SSFP with coil-wise seed selection, PS-SSFP after coil combination, and IDEAL reconstructions were also performed. Water images reconstructed via PS-SSFP methods were compared in terms of the level of fat suppression and the similarity to reference IDEAL images (signed-rank test). Results: While tissue misclassification was broadly evident across regular PS-SSFP images, the proposed method achieved significantly higher levels of fat suppression (P < 0.005) and increased similarity to reference IDEAL images (P < 0.005). Conclusion: The proposed method enhances fat–water separation in phased-array acquisitions by producing improved phase estimates across the imaging volume. J. Magn. Reson. Imaging 2016;44:148–157. © 2015 Wiley Periodicals, Inc

    Genetic Transformation of an Obligate Anaerobe, P. gingivalis for FMN-Green Fluorescent Protein Expression in Studying Host-Microbe Interaction

    Get PDF
    The recent introduction of “oxygen-independent” flavin mononucleotide (FMN)-based fluorescent proteins (FbFPs) is of major interest to both eukaryotic and prokaryotic microbial biologists. Accordingly, we demonstrate for the first time that an obligate anaerobe, the successful opportunistic pathogen of the oral cavity, Porphyromonas gingivalis, can be genetically engineered for expression of the non-toxic green FbFP. The resulting transformants are functional for studying dynamic bacterial processes in living host cells. The visualization of the transformed P. gingivalis (PgFbFP) revealed strong fluorescence that reached a maximum emission at 495 nm as determined by fluorescence microscopy and spectrofluorometry. Human primary gingival epithelial cells (GECs) were infected with PgFbFP and the bacterial invasion of host cells was analyzed by a quantitative fluorescence microscopy and antibiotic protection assays. The results showed similar levels of intracellular bacteria for both wild type and PgFbFP strains. In conjunction with organelle specific fluorescent dyes, utilization of the transformed strain provided direct and accurate determination of the live/metabolically active P. gingivalis' trafficking in the GECs over time. Furthermore, the GECs were co-infected with PgFbFP and the ATP-dependent Clp serine protease-deficient mutant (ClpP-) to study the differential fates of the two strains within the same host cells. Quantitative co-localization analyses displayed the intracellular PgFbFP significantly associated with the endoplasmic reticulum network, whereas the majority of ClpP- organisms trafficked into the lysosomes. Hence, we have developed a novel and reliable method to characterize live host cell-microbe interactions and demonstrated the adaptability of FMN-green fluorescent protein for studying persistent host infections induced by obligate anaerobic organisms

    Information gain and measurement disturbance for quantum agents

    Full text link
    The traditional formalism of quantum measurement (hereafter ``TQM'') describes processes where some properties of quantum states are extracted and stored as classical information. While TQM is a natural and appropriate description of how humans interact with quantum systems, it is silent on the question of how a more general, quantum, agent would do so. How do we describe the observation of a system by an observer with the ability to store not only classical information but quantum states in its memory? In this paper, we extend the idea of measurement to a more general class of sensors for quantum agents which interact with a system in such a way that the agent's memory stores information (classical or quantum) about the system under study. For appropriate sensory interactions, the quantum agent may ``learn'' more about the system than would be possible under any set of classical measurements -- but as we show, this comes at the cost of additional measurement disturbance. We experimentally demonstrate such a system and characterize the tradeoffs, which can be done by considering the information required to erase the effects of a measurement
    corecore