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Purpose: To propose and assess a method to improve the reliability of phase-sensitive fat–water separation for phased-
array balanced steady-state free precession (bSSFP) acquisitions. Phase-sensitive steady-state free precession (PS-SSFP)
is an efficient fat–water separation technique that detects the phase difference between neighboring bands in the
bSSFP magnetization profile. However, large spatial variations in the sensitivity profiles of phased-array coils can lead to
noisy phase estimates away from the coil centers, compromising tissue classification.
Materials and Methods: We first perform region-growing phase correction in individual coil images via unsupervised
selection of a fat-voxel seed near the peak of each coil’s sensitivity profile. We then use an optimal linear combination
of phase-corrected images to segregate fat and water signals. The proposed method was demonstrated on
noncontrast-enhanced SSFP angiograms of the thigh, lower leg, and foot acquired at 1.5T using an 8-channel coil. Indi-
vidual coil PS-SSFP with a common seed selection for all coils, individual coil PS-SSFP with coil-wise seed selection, PS-
SSFP after coil combination, and IDEAL reconstructions were also performed. Water images reconstructed via PS-SSFP
methods were compared in terms of the level of fat suppression and the similarity to reference IDEAL images (signed-
rank test).
Results: While tissue misclassification was broadly evident across regular PS-SSFP images, the proposed method
achieved significantly higher levels of fat suppression (P< 0.005) and increased similarity to reference IDEAL images
(P<0.005).
Conclusion: The proposed method enhances fat–water separation in phased-array acquisitions by producing improved
phase estimates across the imaging volume.
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Balanced Steady-State Free Precession (bSSFP) sequences

typically generate relatively higher levels of signal from

fat when compared to water tissues. However, separation of

these two resonances is critical for many applications includ-

ing cartilage imaging,1 abdominal imaging,2 and angiogra-

phy.3,4 Among the approaches proposed to address this

problem were steady-state techniques that reshape magnet-

ization profiles,5–7 techniques that temporarily alter transient

signal profiles,8–10 and Dixon-type techniques that rely on

multiple acquisitions to separate the two resonances.11–14

Because the above techniques either suppress fat signals dur-

ing acquisition or perform subvoxel fat–water decomposi-

tion based on multiple signal measurements, they can offer

reduced sensitivity to partial volume effects. At the same

time, however, these techniques require pulse sequence mod-

ifications and multiple echoes or acquisitions that usually

prolong scan times.

Phase-sensitive SSFP (PS-SSFP) is a scan-time-efficient

alternative for fat–water separation that does not require

modification of standard bSSFP sequences.15 PS-SSFP gener-

ates out-of-phase fat and water signals by placing their respec-

tive resonances in neighboring bSSFP passbands. Following a

correction for additional slow-varying phase components due

to inadvertent factors such as field inhomogeneity and coil

sensitivity, PS-SSFP leverages abrupt phase changes arising

near fat–water boundaries to separate the two signals. How-

ever, residual phase variations that remain in corrected images

can cause suboptimal fat–water separation.16

PS-SSFP reconstructions have been previously demon-

strated to work reliably on images acquired with quadrature
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coils.15,16 Unlike quadrature coils with uniform coil sensitiv-

ity, individual channels in phased-array coils typically have

relatively large spatial variations in sensitivity, resulting in

increased noise while estimating image phase away from the

coil centers. While an earlier study has proposed to address

this issue by performing phase-sensitive reconstruction on a

single combined image across coils,17 intercoil inconsisten-

cies in image phase may cause phase errors in the combina-

tion and deteriorate reconstruction performance. Other

important studies have proposed performing separate phase-

sensitive reconstructions on individual-coil images, which

were then combined by aligning intercoil phase offsets to

prevent fat–water swaps.2,18 However, residual phase errors

between individual-coil images may show complex spatial

variations and thus may not fully correctable by global

factors.

Here we propose and assess an improved strategy for

phase-sensitive fat–water separation in bSSFP images acquired

with phased-array coils. The specific aims of this study were

to improve the accuracy of region-growing phase correction

via an unsupervised seed-selection procedure, to enhance tis-

sue classification by optimally aggregating phase information

across individual-coil images, and finally to demonstrate the

performance of the proposed strategy in vivo on bSSFP

angiograms acquired in the lower extremities.

Materials and Methods

Dual-Acquisition PS-SSFP Reconstruction
The PS-SSFP approach relies on the frequency dependence of

bSSFP magnetization profiles.15 Balanced SSFP sequences generate

periodic magnetization profiles, with p-radians phase difference

between consecutive passbands (Fig. 1a). Therefore, a D/ 5 p
phase-cycled bSSFP sequence can produce out-of-phase images

when the repetition time (TR) is selected to place fat and water

resonances an odd number of passbands apart, TR 5 (2n11)/Df

where n is an integer and Df is the fat–water frequency difference

(eg, TR 5 4.6 msec at 1.5T). To improve immunity against off-

resonance while maintaining this phase difference, dual-acquisition

PS-SSFP16 acquires a separate D/ 5 0 phase-cycled bSSFP image,

and complex sums the D/ 5 p and D/ 5 0 images (Fig. 1a). The

acquired signal can be expressed as:

SðrÞ5½W ðrÞ2F ðrÞ� � e2ihðrÞ (1)

where r is the spatial location, W is the level of water signal, F is

the level of fat signal, and H denotes the spatially varying image

phase due to various sources including field inhomogeneity, suscep-

tibility, and coil sensitivity.

PS-SSFP assumes that each voxel contains dominantly fat or

water tissue, and that H(r) is distinguishable from the rapid phase

shifts near fat–water boundaries. In such cases, a region-growing

phase-correction can be applied to remove the slowly varying phase

component, H(r).2,14,15 In the current study, we use the correction

algorithm proposed by Hargreaves et al.16 This algorithm first

splits the imaging volume into small blocks (eg, 6 3 6 3 6 voxels).

Starting with a seed block, it updates the block phases by p-radians

when necessary, such that the intensity-weighted sum of block

phases varies smoothly across the image. Following correction of

the images for the estimated block phases, phase-sensitive fat–water

separation is performed.

The reliability of PS-SSFP can be compromised by rapid

phase variations that violate the assumption of gradually varying

H(r). Unlike quadrature coils with broad spatial coverage, phased-

array coils typically introduce large phase variations away from the

coil centers where the individual-coil sensitivity diminishes. To

demonstrate typical differences in image phase between quadrature-

coil and phased-array data, we acquired bSSFP images of the lower

leg with TR 5 9.2 msec at 1.5T using both a quadrature coil and a

receive-only 8-channel phased-array coil. This TR selection—an

even multiple of the ideal TR—places fat and water resonances

two passbands apart, and thus the resulting tissue signals are in

phase. The distributions of voxel magnitude and phase across in-

phase bSSFP images were visualized (Fig. 1b). As expected, voxel

phases are much more broadly spread and variable in a phased-

array coil compared to a quadrature-coil. These excessive phase var-

iations in turn increase the possibility of fat–water misclassification

in phased-array bSSFP acquisitions.

PS-SSFP for Phased-Array Acquisitions
We propose a strategy to improve phase-sensitive reconstructions of

bSSFP data acquired with phased-array coils. In regular PS-SSFP, a

central voxel is selected as the starting seed for region-growing

phase correction.15 A single, common seed can be designated for

all coils to prevent global phase inconsistencies among coils.2 How-

ever, in coils for which the starting seed is relatively distant to the

peak sensitivity region, this procedure can cause suboptimal phase

correction and fat–water swaps in subsequent reconstructions. To

address this issue, we propose an unsupervised technique for coil-

wise seed selection (Fig. 2a). This technique first reconstructs a

low-resolution image for each coil by Fourier transforming the cen-

tral 4% of k-space data. The coil-sensitivity profiles (C1,€,N) are

then taken as the ratio of these individual-coil images to the sum-

of-squares combination of low-resolution images across coils.19

Note that fat typically yields much higher bSSFP signals than water

tissues in the lower extremities considered here.20 A fat-voxel seed

can thus be selected based on signal intensity. However, since tissue

boundaries may be blurred in low-resolution sensitivity profiles,

the sensitivity peak may correspond to a water or background voxel

neighboring a high-intensity fat voxel. For this reason, the sensitiv-

ity profile is multiplied with the magnitude of the respective full-

resolution coil image prior to selection. The voxel that maximizes

this product is then designated as the seed for each coil. This pro-

cedure ensures that seeds are in close proximity to the sensitivity

peaks.

Next, we employ a separate region-growing phase correction

on each coil with the previously identified seeds to remove the

slowly varying phase components (Fig. 2b). We initiate the phase

correction in each coil on a high-signal fat voxel. As a result, fat

voxels in corrected coil images will tend to cumulate around 0

radians (positive real part), whereas water voxels will cumulate

around p-radians (negative real part).15 This seed-selection proce-

dure thereby accounts for intercoil phase offsets, avoiding global
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fat–water swaps across separate coils. However, correction accuracy

can still degrade in regions away from the coil center where

reduced coil sensitivity yields low image magnitude and noisy

phase. Therefore, we propose to obtain accurate phase estimates by

pooling information across coils. Here we assume that the coil ele-

ments in the phased array collectively provide sensitive coverage

across the entire imaging field of view (FOV). The following linear

combination of coil images can then be computed19:

ScmbðrÞ5

XN

i51
S

pc
i ðrÞ � jCiðrÞj

XN

i51
jCiðrÞj

(2)

where S
pc
i denotes the phase-corrected image from the ith coil, and

N is the number of coils. Note that the coil-sensitivity profiles esti-

mated from central k-space data contain residual image phase. To

prevent intercoil inconsistencies due to this remnant phase, the

phase-corrected coil images in Eq. 2 are weighted by the magni-

tude of coil sensitivities. Finally, the phase of Scmb is used to clas-

sify each voxel as water or fat.

Alternative PS-SSFP Reconstructions
To compare the performance of the proposed multiseed combined-coil

method, we implemented three alternative PS-SSFP reconstructions:

1. Single-seed individual-coil reconstruction (PSss): In PSss, a fat

voxel centrally located within the volume was selected manually

as a common seed for all coils. Phase correction was performed

individually on each coil image starting with this common

seed. Following phase correction, global phase offsets among

FIGURE 1: (a) Transverse magnetization profiles of D/ 5 p (dotted line) and D/ 5 0 (dashed line) phase-cycled bSSFP sequences
were simulated along with their complex-sum (CS, solid line). The simulations assumed 908 flip angle, TR/TE 5 4.6/2.3 msec and
T1/T2 5 1200/250 msec at 1.5T. Magnitude (top row) and phase (bottom row) profiles are shown separately, and the locations of
fat and water resonances are marked with arrows. Fat and water signals are p-radians out of phase for D/ 5 p but large field inho-
mogeneity may cause water or fat resonances to leak into neighboring bands. CS maintains the p-radians fat–water phase differ-
ence while reducing sensitivity to field inhomogeneity. (b) To detect this phase difference, PS-SSFP uses a correction step to
remove phase variations from additional sources including coil sensitivity. To illustrate the effects of coil sensitivity, in-phase
bSSFP images (TR/TE 5 9.2/4.6 msec at 1.5T) were acquired using a quadrature extremity coil and an 8-channel phased-array coil
(three representative channels are shown). Histograms of voxel magnitude (top row) and polar histograms of voxel phase (bottom
row) are visualized. Because individual channels in the phased-array coil have compact spatial coverage, voxel magnitudes accu-
mulate around lower intensities compared to the quadrature-coil image. The narrow sensitivity profiles also cause the voxel
phases to be more broadly spread in phased-array images.
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coil images were removed, and individual-coil water images

were reconstructed.2,18 The final reconstruction was calculated

as a weighted combination of individual-coil water images,

where each coil’s weight was proportional to the magnitude of

its sensitivity, as in Eq. 2.

2. Multiseed individual-coil reconstruction (PSms): In PSms, the

starting seeds were determined according to the unsupervised

selection procedure employed in the proposed method. The

remaining parts of PSms were identical to the PSss reconstruc-

tion. Thus, water images were reconstructed separately for each

coil and then linearly combined.

3. Single-seed combined-coil reconstruction (PScc): The first step

of PScc was to calculate a linear combination of coil images19:

SccðrÞ5

XN

i51
SiðrÞ � C �i ðrÞXN

i51
jCiðrÞj

(3)

where uncorrected coil images Si are multiplied with the complex

conjugate of the coil sensitivities C�i . Note that weighting uncor-

rected coil images by the sensitivity magnitudes as in Eq. 2 would

cause signal loss due to intercoil phase inconsistencies. Instead,

the combination in Eq. 3 removes from individual-coil images

the low-spatial-frequency phase variations captured by the sensi-

tivity estimates (including global phase terms). To account for

gradual phase variations still remaining in the combination,

region-growing phase correction was performed on Scc using a

central fat-voxel seed, and the resulting phase-corrected image

was used for fat–water separation.

Experiments
Noncontrast-enhanced bSSFP angiograms were acquired at three

separate stations in the lower extremities: the thigh, the calf, and

the foot. Data were collected on a 1.5T GE (Milwaukee, WI)

Signa scanner (40 mT/m maximum strength, 150/T/m.s maximum

slew rate) using an 8-channel receive-only phased-array coil. Three

volunteers were recruited for the study (two females ages 28 and

34, one male age 28), and all subjects gave written informed con-

sent. The experimental protocols were approved by the local Insti-

tutional Review Board.

To generate angiographic contrast, we used a magnetization-

prepared, segmented 3DFT bSSFP sequence that we developed in

a recent study.21 Dual-acquisition bSSFP data were acquired and

complex summed to mitigate banding artifacts due to field inho-

mogeneity.16 The following parameters were prescribed: superior–

inferior readout direction, 908 flip angle, 5 msec TR (the mini-

mum TR allowed by the readout requirements), 2.5 msec TE, 1.7

seconds inversion recovery time, 80 msec T2-preparation time,

1200 encodes/segment, 12-tip start-up catalyzation based on a

Kaiser-Bessel windowed ramp, and 3 seconds recovery time. A rela-

tively high flip angle was prescribed to increase suppression of

muscle signal due to on-resonant magnetization transfer effects. In

the thigh, an FOV of 350 3 350 3 180 mm3 was covered with

1.4 mm isotropic resolution in 7 minutes 25 seconds. In the calf,

an FOV of 310 3 240 3 140 mm3 was covered with 1 mm iso-

tropic resolution in 7 minutes 46 seconds. In the foot, an FOV of

FIGURE 2: The proposed method. (a) The initial step of the
proposed reconstruction is to identify fat-voxel seeds near the
peak of each coil’s sensitivity profile. To do this, sensitivity
maps are first estimated from the central portion of k-space
data for each coil (bottom row). These maps are then multi-
plied with the corresponding bSSFP images (top row), and for
each coil the voxel that maximizes the product is selected as
the starting seed (marked with blue crosses). (b) Following coil-
wise seed selection, region-growing phase correction (RG-PC)
is applied to individual-coil images (Si) in order to remove
slowly varying phase components. The phase-corrected coil
images (Spc

i ) are then linearly combined, where images are
weighted by the magnitude of respective coil sensitivities (jCij).
Phase-sensitive fat–water separation is finally performed based
on the magnitude and phase of the combined image (Scmb).
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270 3 200 3 140 mm3 was covered with 1 mm isotropic resolution

in a total scan time of 6 minutes 28 seconds. All PS-SSFP recon-

structions were performed using a block of size 6 3 6 3 6 voxels.

Prior to maximum-intensity projections (MIPs), all datasets were

transformed to k-space, zero-padded to double the k-space cover-

age, and inverse Fourier-transformed. This procedure was per-

formed to minimize partial volume effects and to improve

visualization quality.22

As a reference for PS-SSFP reconstructions, IDEAL (Iterative

Decomposition of Water and Fat with Echo Asymmetry and Least-

Squares Estimation) fat–water separation was implemented on dual-

acquisition bSSFP data separately collected using a multiecho

bipolar-readout 3DFT sequence.23 The IDEAL sequence was imple-

mented using TR 5 10 msec and three echoes with 2.8-msec spacing,

TE 5 (1.3, 4.1, 6.9) msec. To maintain identical spatial resolution,

FOV, and scan time to PS-SSFP acquisitions at each station, IDEAL

acquisitions were 1.5-fold accelerated and undersampled data were

reconstructed using ARC (Autocalibrating Reconstruction for Carte-

sian Sampling).24 A multipeak IDEAL reconstruction was then per-

formed to separate fat and water signals.25

Two complementary analyses were performed to evaluate PS-

SSFP reconstructions. First, PS-SSFP water images were compared

with unseparated bSSFP images. PS-SSFP classifies each voxel as

either water or fat. It has been reported in the lower extremities at

1.5T that the average intensity of fat signals is at least twice as

high as the average intensity of water signals.20 Thus, the intensity

FIGURE 3: Dual-acquisition bSSFP images in the lower extremities, the foot (a) and the lower leg (b), collected using an 8-channel
phased-array coil. Unseparated complex-sum images are shown for bSSFP, whereas water images are shown for PSms (multiseed,
individual coil) and the proposed method. Note that PSms was performed individually on each coil, and seed selection was identi-
cal across the two methods (starting seeds marked with blue crosses). In both a and b, the top row shows magnitude images and
the middle row shows phase images (see colorbar) obtained from an individual coil. Meanwhile, the bottom row shows the final
image combined across coils. Relatively large variations are observed in phase images away from the sensitivity peak of the coils:
in posterior regions of the foot image and superior–anterior regions of the lower leg (marked with dashed ellipses). While these
variations cause fat–water misclassification in individual-coil and combined PSms images (marked with arrows), the proposed
method produces more reliable phase estimates to improve tissue classification.
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of PS-SSFP water images should become smaller with improved fat

suppression. To compare the level of fat suppression across differ-

ent PS-SSFP methods, we measured the mean image intensity

across axial cross-sections of each reconstruction. In each cross-

section we calculated the ratio of the mean intensities measured in

PS-SSFP versus bSSFP images (RbSSFP; expected to decrease with

improved fat suppression).

It is possible that misclassification of water tissue that yield

higher bSSFP signals than fat (eg, synovial fluid) can introduce a

downward bias in the intensity ratio of PS-SSFP to unseparated

bSSFP images. To ensure that these ratio measurements are not sig-

nificantly biased by suboptimal water signals, a separate control

analysis was performed. In this analysis, PS-SSFP and IDEAL water

images were compared after intensity normalization. For normaliza-

tion, an identical region-of-interest (ROI) with homogeneous mus-

cle signal (minimum size of 500 voxels) was selected across all

reconstructed volumes. The mean signal intensity within the mus-

cle ROI was normalized to unity separately for PS-SSFP and

IDEAL images. PS-SSFP images with more reliable fat–water sepa-

ration should yield similar intensities to the reference IDEAL

images. In each axial cross-section, we calculated the ratio of the

mean intensities measured in PS-SSFP versus IDEAL images

(RIDEAL; expected to approach 1 with improved water signals). All

statistical comparisons were performed using Wilcoxon signed-rank

tests (P< 0.005).

Results

Balanced SSFP images of the foot and the lower leg from a

sample coil, and corresponding water images reconstructed

via PSms (multiseed, individual-coil) and the proposed

method, are displayed in Fig. 3. The phase images become

progressively noisier away from the sensitivity peak for each

coil. Increased phase noise in turn causes local failures

FIGURE 4: In vivo thigh images combined across 8 channels of a phased-array coil. First row: The unseparated bSSFP image shown
as a reference. Second row: A coronal slice from fat images reconstructed using PSss, PSms, PScc, and the proposed method. Third
row: A coronal slice from water images reconstructed using PSss, PSms, PScc, and the proposed method. Fourth row: Maximum-
intensity projections (MIPs) across water images. Residual fat signals are seen in multiple regions of regular PS-SSFP reconstruc-
tions (marked with arrows). In contrast, the proposed method maintains reliable fat–water separation across the imaging volume.
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during phase correction, and regional fat–water misclassifica-

tion in PSms. Note that residual fat signals in individual-coil

images are prominent even after image combination across

coils. In contrast, the proposed method achieves visibly

improved fat suppression compared to PSms.

Representative bSSFP images of the thigh and the

lower leg reconstructed via PSss (single-seed, individual-coil),

PSms, and PScc (combined-coil) are shown in Figs. 4 and 5.

Both cross-sectional and MIP views of water images—com-

bined across 8 channels of the phased-array coil—show

broad regions of fat–water misclassification in PSss, PSms,

and PScc. The combination across coils prior to phase cor-

rection in PScc and the coil-wise seed selection in PSms

partly improve water depiction compared to regular PSss.

Nonetheless, water images obtained via the proposed

method demonstrate enhanced tissue separation compared

to PScc and PSms.

Quantitative assessments of the level of fat suppression

(RbSSFP) and the optimality of water signals (RIDEAL) are

listed in Table 1. Our proposed method yielded significantly

smaller RbSSFP than each of the three alternative PS-SSFP

reconstructions in the thigh, in the lower leg, and in the

foot (P< 0.005), indicating that it achieves improved fat

suppression. Furthermore, the proposed method attains the

most similar image intensities to IDEAL (Fig. 6) among all

PS-SSFP reconstructions in all body regions (P< 0.005).

These results indicate that the proposed method achieves

significantly more reliable fat–water separation compared to

regular PS-SSFP reconstructions.

Discussion

PS-SSFP fat–water separation employs a correction algo-

rithm to remove phase variations due to undesirable factors

including coil sensitivity. This correction proves challenging

in phased-array acquisitions since individual-coil image

phase typically shows substantial variations away from the

coil centers. The proposed method first uses a coil-wise seed

selection for individual-coil phase correction and obtains

accurate phase estimates near coil-sensitivity peaks. Phase-

corrected images are then linearly combined to improve

phase estimates in the remaining regions, thereby obtaining

enhanced phase estimates across the imaging volume.

A number of effective techniques have been previously

proposed for tissue separation in bSSFP imaging.26 Sequences

that employ saturation or spectral-spatial pulses for fat sup-

pression can reduce sensitivity to partial volume effects and

FIGURE 5: In vivo lower leg images combined across 8 channels of a phased-array coil. First row: The unseparated bSSFP image
shown as a reference. Second row: A coronal slice from water images reconstructed using PSss, PSms, PScc, and the proposed
method. Third row: MIPs across water images. Fat–water misclassification is seen broadly across regular PS-SSFP reconstructions
(marked with arrows). Meanwhile, the proposed method achieves improved fat–water separation across the entire imaging
volume.
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FIGURE 6: Unseparated bSSFP images, fat/water images reconstructed using IDEAL, and fat/water images reconstructed using
the proposed method. First row: A sagittal slice from in vivo thigh images. Second row: A sagittal slice from in vivo lower leg
images. Third row: A sagittal slice from in vivo foot images.

TABLE 1. Quantitative Assessments of Fat-Water Separation

PSss PSms PScc Proposed

Thigh 0.363 6 0.033 0.242 6 0.044 0.252 6 0.042 0.181 6 0.039a

RbSSFP Lower leg 0.290 6 0.053 0.269 6 0.072 0.267 6 0.088 0.246 6 0.089a

Foot 0.176 6 0.046 0.174 6 0.049 0.176 6 0.051 0.167 6 0.048a

Thigh 2.163 6 0.555 1.346 6 0.184 1.485 6 0.449 1.052 6 0.213a

RIDEAL Lower leg 1.766 6 0.493 1.586 6 0.377 1.623 6 0.747 1.416 6 0.403a

Foot 1.685 6 0.724 1.725 6 0.782 1.729 6 0.748 1.670 6 0.796a

Measurements are reported as mean 6 SD across cross-sections.
aSignificantly different results (P< 0.005).
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chemical-shift artifacts. Yet because these pulses reduce scan

efficiency and increase sensitivity to field inhomogeneity, they

are often not preferred in imaging extremities.26 Meanwhile,

Dixon-type methods including IDEAL use multiecho meas-

urements to offer accurate quantification of subvoxel fat–

water composition and improved immunity against field

inhomogeneity. However, these methods require significantly

prolonged scan times and complex reconstruction procedures.

In contrast, PS-SSFP does not use special pulses, multiple

echoes, or other sequence modifications. It separates fat and

water based on a relatively simple phase-sensitive reconstruc-

tion, at the expense of increased sensitivity to partial volume

effects. Therefore, the proposed method can offer fat–water

separation with high scan and processing efficiency.

The application of PS-SSFP on phased-array acquisi-

tions has been considered in several recent studies.2,17 One

approach is to first form a linear-combination image across

coils, and then to perform fat–water separation on the com-

bination.17 This approach, related to PScc, can suffer from

residual phase errors in the combined image due to incon-

sistencies of uncorrected image phase across individual coils.

Alternatively, fat–water separation can be performed on

individual-coil images as in PSss and PSms.
2 Images are then

combined after correcting for global phase offsets among

separate coils.18 However complex, intercoil phase inconsis-

tencies may exist even after coil-wise phase correction. The

proposed method comprises several technical advances to

achieve improved fat–water separation compared to previous

approaches. Unlike PScc, our method performs phase correc-

tion prior to image combination across coils. In this process,

it utilizes an automated selection to place seeds in regions of

high coil sensitivity as opposed to a common seed for all

coils. Finally, unlike PSss or PSms, it separates fat–water vox-

els based on an improved phase estimate obtained via com-

bination of corrected coil images.

A basic limitation of PS-SSFP concerns the selection

of the sequence TR. A TR of 4.6 msec at 1.5T (or 2.3 msec

at 3T) ideally places fat and water resonances at the centers

of adjacent passbands. While out-of-phase images can be

acquired at odd multiples of the ideal TR (eg, TR 5 6.9

msec at 3T), these longer TRs may be undesirable since

they increase field-inhomogeneity induced phase variations.

However, TR 5 6.9 msec or longer could be required for

3T imaging where the ideal TR is too restricted to maintain

practical readout resolutions. Therefore, PS-SSFP at higher

field strengths can offer improved signal-to-noise ratio

(SNR) while increasing sensitivity to field inhomogeneity. It

is also possible to prescribe moderately longer/shorter TRs

than the ideal value (eg, TR 5 5 msec at 1.5T was the mini-

mum possible TR in this study). Such alterations cause the

fat resonance to be offset from the passband center, slightly

perturbing the fat–water phase difference in dual-acquisition

bSSFP. Because PS-SSFP assumes a p-radians fat–water

phase difference, accurate tissue classification is expected

when the total phase accrual due to chemical shift and field

inhomogeneity is less than p/2-radians. Thus, TR perturba-

tions that increase chemical-shift induced phase effectively

reduce the tolerable range of field inhomogeneity.

The proposed method has some other technical limita-

tions that are common to PS-SSFP reconstructions. First, the

current implementation comprises two sequential phase-cycled

acquisitions, increasing susceptibility to motion. To mitigate

artifacts due to patient motion, retrospective motion correction

can be performed using navigators incorporated into bSSFP

sequences. Second, PS-SSFP classifies each voxel as either fat or

water, introducing sensitivity to partial volume effects. Spatial

resolution can be increased to reduce this sensitivity, while

undersampling can be used to maintain scan-time efficiency.

Lastly, when field inhomogeneity is significant, residual banding

artifacts might be visible in dual-acquisition bSSFP images. To

improve robustness against field inhomogeneity, the proposed

method can be applied to complex-sum images from a greater

number of phase-cycled acquisitions without any modification.

Several technical developments can be further consid-

ered to improve the proposed fat–water separation. While

PS-SSFP assumes a single-peak model for the fat resonance,

a multipeak extension could offer enhanced tissue delinea-

tion.25 Note that a multipeak model based on single-echo

acquisitions would be underconstrained. However, a dual-

echo acquisition may enable subvoxel tissue decomposition,

assuming that the parameters of the fat spectrum are cali-

brated a priori.27 Another improvement concerns the phase

correction step of the proposed method. We preferred a

region-growing algorithm2,15,16 in this study because it

yielded high-quality reconstructions in the lower extremities,

and it offered computationally efficient reconstructions for

three-dimensional datasets. However, iterative phase-

correction algorithms based on graph cuts can further

improve reliability against large field inhomogeneities.27

The proposed fat–water separation method was dem-

onstrated successfully for noncontrast-enhanced angiograms

acquired in three body parts in the lower extremities.

Although a relatively small number of healthy subjects is

reported, these promising results motivate a more direct

examination of the reliability of our method under clinical

settings. In particular, future studies are warranted that con-

sider a larger population, including patients with vascular

disease, various other body parts and habitus, reproducibility

assessments, and validation.

In conclusion, we have demonstrated improved phase-

sensitive reconstructions of phased-array images, by combin-

ing an unsupervised seed-selection procedure for region-

growing phase correction and an optimal pooling of phase

information across coils. Thus, the proposed method is a

promising technique for rapid fat–water separation in

bSSFP applications.
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