1,002 research outputs found

    The effect of gibberellic acid applications on the cracking rate and fruit quality in the ‘0900 Ziraat’ sweet cherry cultivar

    Get PDF
    This study was conducted to determine the effects of different gibberellic acid (GA3) doses (0, 5, 10, 15, 20 and 25 ppm) on the fruit quality and cracking rate in the ‘0900 Ziraat’ sweet cherry cultivar. In this study, different GA3 doses affected significantly (p < 0.05) the most important characteristics of fruit such as fruit weight, fruit firmness and cracking rate determining the marketable value. The lowest and highest fruit weight was 7.95 and 10.02 g in control and 15 ppm GA3 treatments, respectively. Similarly, the lowest and highest fruit firmness was found to be 7.45 and 9.63 N in control treatment and 15 ppm GA3 treatments, respectively. In addition, cracking index of 5.60 and 25.50% was obtained for 20 ppm GA3 and control treatments, respectively. It was also found that GA3 treatments delayed the harvest date for 3 - 4 days and increased the fruit weight by 10.71% in comparison with the control. Furthermore, the application of GA3 decreased the fruit cracking rate by 77.80% in comparison with the control. Fruit colour values were also affected by GA3, application, and brighter and darker red coloured fruits were obtained.Key words: Sweet cherry, gibberellic acid, cracking index, fruit qualit

    Hole-doped, High-Temperature Superconductors Li_{x}BC, Na_{x}BC and C_{x} : A Coherent-Potential-Based Prediction

    Full text link
    Using density-functional-based methods, we show that the hole-doped Li_{x}BC and Na_{x}BC in P6_{3}/mmc crystal structure and C_{x} in graphite structure are capable of showing superconductivity, possibly with a T_{c} much higher than that of MgB_{2}. We use full-potential methods to obtain the optimized lattice constants a and c, coherent-potential approximation to describe the effects of disorder, Gaspari-Gyorffy formalism to obtain the electron-phonon coupling constant λ\lambda, and Allen-Dynes equation to calculate T_{c} as a function of hole concentration in these alloys.Comment: 4 pages, 5 figure

    Strongly interacting σ\sigma-electrons and MgB2_2 superconductivity

    Full text link
    MgB(pnσpnπ)2(p^{n_{\sigma}}p^{n_{\pi}})_{2} is classified as a system with strongly interacting σ\sigma-electrons and non-correlated π\pi-electrons of boron ions. The kinematic and Coulomb interaction V between the orbitally degenerated σ\sigma-electrons provide the superconducting state with an anisotropic gap of s*-wave symmetry. The critical temperature TcT_c has a non-monotonic dependence on the distance r between the centers of gravity of σ\sigma- and π\pi-bands. MgB2_2 corresponds to r=0.085 eV and V=0.45 eV in our model with flat bands. The derived superconducting density of electronic states is in good agreement with available experimental and theoretical data. The possibilities for increasing TcT_c are discussed.Comment: 8 pages, 4 figure

    Titanium-capped carbon chains as promising new hydrogen storage media

    Full text link
    The capacity of Ti-capped sp carbon atomic chains for use as hydrogen storage media is studied using first-principles density functional theory. The Ti atom is strongly attached at one end of the carbon chains via d-p hybridization, forming stable TiCn complexes. We demonstrate that the number of adsorbed H2 on Ti through Kubas interaction depends upon the chain types. For polyyne (n even) or cumulene (n odd) structures, each Ti atom can hold up to five or six H2 molecules, respectively. Furthermore, the TiC5 chain effectively terminated on a C20 fullerene can store hydrogen with optimal binding of 0.52 eV/H2. Our results reveal a possible way to explore high-capacity hydrogen storage materials in truly one-dimensional carbon structures.Comment: accepted for publication in Physical Chemistry Chemical Physic

    LiBC by polarized Raman spectroscopy: Evidence for lower crystal symmetry ?

    Full text link
    The paper presents polarized Raman scattering study on a few-micron-size crystallite of LiBC with natural faces. The experiment on as grown sample has revealed a four lattice modes with frequencies at 1276 cm^-1, 830 cm^-1, 546 cm^-1 and 170 cm^-1, respectively. The number of observed Raman lines and their selection rules are incompatible with the assumed D6h symmetry. The modes at 1276 cm^-1 and 170 cm^-1 correspond to the expected Raman active modes. In contrast with the superconducting compound MgB2, the B-C bond stretching mode (at 1276 cm^-1) has rather small damping. The two "forbidden" modes (at 830 cm^-1 and 546 cm^-1) disappeared after subsequent thermal treatment.Comment: 4 pages, LaTeX, complementary experimental resul

    Gain of function mutation in K(ATP) channels and resulting upregulation of coupling conductance are partners in crime in the impairment of Ca<sup>2+</sup> oscillations in pancreatic ß-cells

    Get PDF
    Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K+ channels (K(ATP) channels) of pancreatic β-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse β-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between β-cells within pancreatic islets. Using computational modeling, we show that upregulation in Cx36 might play a functional role in the impairment of glucose stimulated Ca2+ oscillations in a cluster of β-cells with Kir6.1 gain of function mutations in their K(ATP) channels (GoF-K(ATP) channels). Our results show that without an increase in Cx36 expression, a gain of function mutation in Kir6.1 might not be sufficient to diminish glucose stimulated Ca2+ oscillations in a β-cell cluster. We also show that a reduced Cx36 expression, which leads to loss of coordination in a wild-type β-cell cluster, restores coordinated Ca2+ oscillations in a β-cell cluster with GoF-K(ATP) channels. Our results indicate that in a heterogenous β-cell cluster with GoF-K(ATP) channels, there is an inverted u-shaped nonmonotonic relation between the cluster activity and Cx36 expression. These results show that in a neonatal diabetic β-cell model, gain of function mutations in the Kir6.1 cause Cx36 overexpression, which aggravates the impairment of glucose stimulated Ca2+ oscillations.</p

    Gain of function mutation in K(ATP) channels and resulting upregulation of coupling conductance are partners in crime in the impairment of Ca<sup>2+</sup> oscillations in pancreatic ß-cells

    Get PDF
    Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K+ channels (K(ATP) channels) of pancreatic β-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse β-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between β-cells within pancreatic islets. Using computational modeling, we show that upregulation in Cx36 might play a functional role in the impairment of glucose stimulated Ca2+ oscillations in a cluster of β-cells with Kir6.1 gain of function mutations in their K(ATP) channels (GoF-K(ATP) channels). Our results show that without an increase in Cx36 expression, a gain of function mutation in Kir6.1 might not be sufficient to diminish glucose stimulated Ca2+ oscillations in a β-cell cluster. We also show that a reduced Cx36 expression, which leads to loss of coordination in a wild-type β-cell cluster, restores coordinated Ca2+ oscillations in a β-cell cluster with GoF-K(ATP) channels. Our results indicate that in a heterogenous β-cell cluster with GoF-K(ATP) channels, there is an inverted u-shaped nonmonotonic relation between the cluster activity and Cx36 expression. These results show that in a neonatal diabetic β-cell model, gain of function mutations in the Kir6.1 cause Cx36 overexpression, which aggravates the impairment of glucose stimulated Ca2+ oscillations.</p

    Role of the E2g phonon in the superconductivity of MgB2: a Raman scattering study

    Full text link
    Temperature dependent Raman scattering studies in polycrystalline MgB2(10<T<300 K)reveal that the E2g phonon does not experience any self energy renormalization effect across the superconducting critical temperature Tc ~ 40 K. In contrast, most of the current theoretical models rely on the role of the E2g phonon in the electron-phonon coupling mechanism of superconductivity in MgB2. According to these models, a hardening of 12% is expected below Tc at the Gamma point of the Brillouim zone. In the presence of our results, those models must be reviewed. The analysis of the temperature dependence of the E2g phonon frequency yields to a isobaric Gruneisen parameter of -1.2< gama(E2g)< 0.2, smaller than the value of 3.9 obtained from isothermal Raman experiments under pressure. It is suggested that this apparent disagreement can be explained in terms of pressure induced changes of the topology of the Fermi surface. Finally we notice that the phonon linewidth presents the expected two-phonon anharmonic decay as a function of T and no anomalous temperature dependence of the linewidth is observed near Tc.Comment: Published in Solid State Comm. 125, 499 (2003

    A First-principles Prediction of Two-Dimensional Superconductivity in Pristine B2C Single layer

    Full text link
    Based on first-principles lattice dynamics and electron-phonon coupling calculations, B2C sheet is predicted to be a two-dimensional (2D) phonon-mediated superconductor with a relatively high transition temperature (Tc). The electron-phonon coupling parameter calculated is 0.92, and it is mainly contributed by low frequency out-of-plane phonon modes and electronic states with a {\pi} character. When the Coulomb pseudopotential is set to 0.10, the estimated temperature Tc is 19.2 K. To be best of our knowledge, B2C is the first pristine 2D superconductor with a Tc higher than the boiling point of liquid helium.Comment: accepted by Nanoscal

    Effects of Al doping on the structural and electronic properties of Mg(1-x)Al(x)B2

    Full text link
    We have studied the structural and electronic properties of Mg(1-x)Al(x)B2 within the Virtual Crystal Approximation (VCA) by means of first-principles total-energy calculations. Results for the lattice parameters, the electronic band structure, and the Fermi surface as a function of Al doping for 0<x<0.6 are presented. The ab initio VCA calculations are in excellent agreement with the experimentally observed change in the lattice parameters of Al doped MgB2. The calculations show that the Fermi surface associated with holes a the boron planes collapses gradually with aluminum doping and vanishes for x=0.56. In addition, an abrupt topological change in the sigma-band Fermi surface was found for x=0.3. The calculated hole density correlates closely with existing experimental data for Tc(x), indicating that the observed loss of superconductivity in Mg(1-x)Al(x)B2 is a result of hole bands filling.Comment: 4 pages (revtex) and 4 figures (postscript
    corecore