895 research outputs found

    Dynamic Token Pruning in Plain Vision Transformers for Semantic Segmentation

    Full text link
    Vision transformers have achieved leading performance on various visual tasks yet still suffer from high computational complexity. The situation deteriorates in dense prediction tasks like semantic segmentation, as high-resolution inputs and outputs usually imply more tokens involved in computations. Directly removing the less attentive tokens has been discussed for the image classification task but can not be extended to semantic segmentation since a dense prediction is required for every patch. To this end, this work introduces a Dynamic Token Pruning (DToP) method based on the early exit of tokens for semantic segmentation. Motivated by the coarse-to-fine segmentation process by humans, we naturally split the widely adopted auxiliary-loss-based network architecture into several stages, where each auxiliary block grades every token's difficulty level. We can finalize the prediction of easy tokens in advance without completing the entire forward pass. Moreover, we keep kk highest confidence tokens for each semantic category to uphold the representative context information. Thus, computational complexity will change with the difficulty of the input, akin to the way humans do segmentation. Experiments suggest that the proposed DToP architecture reduces on average 20%−35%20\% - 35\% of computational cost for current semantic segmentation methods based on plain vision transformers without accuracy degradation

    SegViT: Semantic Segmentation with Plain Vision Transformers

    Full text link
    We explore the capability of plain Vision Transformers (ViTs) for semantic segmentation and propose the SegVit. Previous ViT-based segmentation networks usually learn a pixel-level representation from the output of the ViT. Differently, we make use of the fundamental component -- attention mechanism, to generate masks for semantic segmentation. Specifically, we propose the Attention-to-Mask (ATM) module, in which the similarity maps between a set of learnable class tokens and the spatial feature maps are transferred to the segmentation masks. Experiments show that our proposed SegVit using the ATM module outperforms its counterparts using the plain ViT backbone on the ADE20K dataset and achieves new state-of-the-art performance on COCO-Stuff-10K and PASCAL-Context datasets. Furthermore, to reduce the computational cost of the ViT backbone, we propose query-based down-sampling (QD) and query-based up-sampling (QU) to build a Shrunk structure. With the proposed Shrunk structure, the model can save up to 40%40\% computations while maintaining competitive performance.Comment: 9 Pages, NeurIPS 202

    Effects of long-term ammonia and heat stress on growth performance, antioxidant and immunity of wild and breeding juvenile rice field eel (Monopterus albus)

    Get PDF
    This study aimed to evaluate the impacts of wild and breeding juvenile rice field eel under conditions of ammonia and heat stress. The growth performance (FBW, WGR, SGR, and FCR) of 360 wild (24.22 ± 0.30 g) and 360 breeding (24.16 ± 0.27 g) strains was significantly hindered by ammonia and heat stress. The inhibitory effects were more obvious when the two stresses were combined. The growth performance and survival rates of the breeding strains outperformed that of the wild strains under identical stress conditions, this was explained by the expression of the growth-related gene (gh). They have increased the enzyme activity (CAT and GSH-Px) and expression of immune-related genes (cat, gpx3, and hsp90α) in response to oxidative stress. However, the results of certain indicator enzymes indicate the presence of oxidative damage in their tissues. The presence of an inflammatory response in the tissues was suggested by the up-regulation of genes associated with pro-inflammatory cytokines (il-1β and il-8) and the down-regulation of genes related to anti-inflammatory cytokines (il-10). Additionally, the presence of tissue damage was shown by the up-regulation of genes connected to apoptosis (cas2, cas8, and cas9) and the down-regulation of genes connected to tight junctions (zo-1). Nevertheless, it is noteworthy that breeding strains exhibited superior adaptability to ammonia and heat stress in comparison to wild strains

    Prognostic value of the FUT family in acute myeloid leukemia

    Get PDF
    Genetic abnormalities are more frequently viewed as prognostic markers in acute myeloid leukemia (AML) in recent years. Fucosylation, catalyzed by fucosyltransferases (FUTs), is a post-translational modification that widely exists in cancer cells. However, the expression and clinical implication of the FUT family (FUT1-11) in AML has not been investigated. From the Cancer Genome Atlas database, a total of 155 AML patients with complete clinical characteristics and FUT1-11 expression data were included in our study. In patients who received chemotherapy alone showed that high expression levels of FUT3, FUT6, and FUT7 had adverse effects on event-free survival (EFS) and overall survival (OS) (all P <0.05), whereas high FUT4 expression had favorable effects on EFS and OS (all P <0.01). However, in the allogeneic hematopoietic stem cell transplantation (allo-HSCT) group, we only found a significant difference in EFS between the high and low FUT3 expression subgroups (P = 0.047), while other FUT members had no effect on survival. Multivariate analysis confirmed that high FUT4 expression was an independent favorable prognostic factor for both EFS (HR = 0.423, P = 0.001) and OS (HR = 0.398, P <0.001), whereas high FUT6 expression was an independent risk factor for both EFS (HR = 1.871, P = 0.017) and OS (HR = 1.729, P = 0.028) in patients who received chemotherapy alone. Moreover, we found that patients with low FUT4 and high FUT6 expressions had the shortest EFS and OS (P <0.05). Our study suggests that high expressions of FUT3/6/7 predict poor prognosis, high FUT4 expression indicates good prognosis in AML; FUT6 and FUT4 have the best prognosticating profile among them, but their effects could be neutralized by allo-HSCT

    Up-regulation of DDIT4 predicts poor prognosis in acute myeloid leukaemia

    Get PDF
    The mammalian target of rapamycin (mTOR) inhibitor, DNA damage inducible transcript 4 (DDIT4), has inducible expression in response to various cellular stresses. In multiple malignancies, studies have shown that DDIT4 participates in tumorigenesis and impacts patient survival. We aimed to study the prognostic value of DDIT4 in acute myeloid leukaemia (AML), which is currently unclear. Firstly, The Cancer Genome Atlas was screened for AML patients with complete clinical characteristics and DDIT4 expression data. A total of 155 patients were included and stratified according to the treatment modality and the median DDIT4 expression levels. High DDIT4 expressers had shorter overall survival (OS) and event-free survival (EFS) than the low expressers among the chemotherapy-only group (all P <.001); EFS and OS were similar in the high and low DDIT4 expressers of the allogeneic haematopoietic stem cell transplantation (allo-HSCT) group. Furthermore, in the DDIT4(high) group, patients treated with allo-HSCT had longer EFS and OS than those who received chemotherapy alone (all P <.01). In the DDIT4(low) group, OS and EFS were similar in different treatment groups. Secondly, we analysed two other cytogenetically normal AML (CN-AML) cohorts derived from the Gene Expression Omnibus database, which confirmed that high DDIT4 expression was associated with poorer survival. Gene Ontology (GO) enrichment analysis showed that the genes related to DDIT4 expression were mainly concentrated in the acute and chronic myeloid leukaemia signalling pathways. Collectively, our study indicates that high DDIT4 expression may serve as a poor prognostic factor for AML, but its prognostic effects could be outweighed by allo-HSCT

    Microstructural-defect-induced Dzyaloshinskii-Moriya interaction

    Get PDF
    The antisymmetric Dzyaloshinskii?Moriya interaction (DMI) plays a decisive role for the stabilization and control of chirality of skyrmion textures in various magnetic systems exhibiting a noncentrosymmetric crystal structure. A less studied aspect of the DMI is that this interaction is believed to be operative in the vicinity of lattice imperfections in crystalline magnetic materials, due to the local structural inversion symmetry breaking. If this scenario leads to an effect of sizable magnitude, it implies that the DMI introduces chirality into a very large class of magnetic materials?defect-rich systems such as polycrystalline magnets. Here, we show experimentally that the microstructural-defect-induced DMI gives rise to a polarization-dependent asymmetric term in the small-angle neutron scattering (SANS) cross section of polycrystalline ferromagnets with a centrosymmetric crystal structure. The results are supported by theoretical predictions using the continuum theory of micromagnetics. This effect, conjectured already by Arrott in 1963, is demonstrated for nanocrystalline terbium and holmium (with a large grain-boundary density), and for mechanically deformed microcrystalline cobalt (with a large dislocation density). Analysis of the scattering asymmetry allows one to determine the defect-induced DMI constant, D=0.45±0.07mJ/m2 for Tb at 100K. Our study proves the generic relevance of the DMI for the magnetic microstructure of defect-rich ferromagnets with vanishing intrinsic DMI. Polarized SANS is decisive for disclosing the signature of the defect-induced DMI, which is related to the unique dependence of the polarized SANS cross section on the chiral interactions. The findings open up the way to study defect-induced skyrmionic magnetization textures in disordered materials

    Computed Tomography Imaging of Primary Lung Cancer in Mice Using a Liposomal-Iodinated Contrast Agent

    Get PDF
    To investigate the utility of a liposomal-iodinated nanoparticle contrast agent and computed tomography (CT) imaging for characterization of primary nodules in genetically engineered mouse models of non-small cell lung cancer.Primary lung cancers with mutations in K-ras alone (Kras(LA1)) or in combination with p53 (LSL-Kras(G12D);p53(FL/FL)) were generated. A liposomal-iodine contrast agent containing 120 mg Iodine/mL was administered systemically at a dose of 16 µl/gm body weight. Longitudinal micro-CT imaging with cardio-respiratory gating was performed pre-contrast and at 0 hr, day 3, and day 7 post-contrast administration. CT-derived nodule sizes were used to assess tumor growth. Signal attenuation was measured in individual nodules to study dynamic enhancement of lung nodules.A good correlation was seen between volume and diameter-based assessment of nodules (R(2)>0.8) for both lung cancer models. The LSL-Kras(G12D);p53(FL/FL) model showed rapid growth as demonstrated by systemically higher volume changes compared to the lung nodules in Kras(LA1) mice (p<0.05). Early phase imaging using the nanoparticle contrast agent enabled visualization of nodule blood supply. Delayed-phase imaging demonstrated significant differential signal enhancement in the lung nodules of LSL-Kras(G12D);p53(FL/FL) mice compared to nodules in Kras(LA1) mice (p<0.05) indicating higher uptake and accumulation of the nanoparticle contrast agent in rapidly growing nodules.The nanoparticle iodinated contrast agent enabled visualization of blood supply to the nodules during the early-phase imaging. Delayed-phase imaging enabled characterization of slow growing and rapidly growing nodules based on signal enhancement. The use of this agent could facilitate early detection and diagnosis of pulmonary lesions as well as have implications on treatment response and monitoring

    The Euscaphis japonica genome and the evolution of malvids

    Get PDF
    Malvids is one of the largest clades of rosids, includes 58 families and exhibits remarkable morphological and ecological diversity. Here, we report a high-quality chromosome-level genome assembly for Euscaphis japonica, an early-diverging species within malvids. Genome-based phylogenetic analysis suggests that the unstable phylogenetic position of E. japonica may result from incomplete lineage sorting and hybridization event during the diversification of the ancestral population of malvids. Euscaphis japonica experienced two polyploidization events: the ancient whole genome triplication event shared with most eudicots (commonly known as the c event) and a more recent whole genome duplication event, unique to E. japonica. By resequencing 101 samples from 11 populations, we speculate that the temperature has led to the differentiation of the evergreen and deciduous of E. japonica and the completely different population histories of these two groups. In total, 1012 candidate positively selected genes in the evergreen were detected, some of which are involved in flower and fruit development. We found that reddening and dehiscence of the E. japonica pericarp and long fruit-hanging time promoted the reproduction of E. japonica populations, and revealed the expression patterns of genes related to fruit reddening, dehiscence and abscission. The key genes involved in pentacyclic triterpene synthesis in E. japonica were identified, and different expression patterns of these genes may contribute to pentacyclic triterpene diversification. Our work sheds light on the evolution of E. japonica and malvids, particularly on the diversification of E. japonica and the genetic basis for their fruit dehiscence and abscission.DATA AVAILABILITY STATEMENT : All sequences described in this manuscript have been submitted to the National Genomics Data Center (NGDC). The raw whole-genome data of E. japonica have been deposited in BioProject/GSA (https://bigd.big.ac.cn/gsa.) under the accession codes PRJCA005268/CRA004271, and the assembly and annotation data have been deposited at BioProject/GWH (https://bigd.big.ac.cn/gwh) under the accession codes PRJCA005268/GWHBCHS00000000. The raw transcriptomes data of E. japonica have been deposited in BioProject/GSA (https://bigd.big.ac.cn/gsa.) under the accession codes PRJCA005298/CRA004272.SUPPLEMENTARY MATERIAL 1: Supplementary Note 1. Chromosome number assessment. Supplementary Note 2. Whole-genome duplication identification and dating. Supplementary Note 3. Observation of E. japonica seed dispersal. Supplementary Note 4. Determination of pentacyclic triterpene substances. Figure S1. Cytogenetic analysis of E. japonica. Figure S2. Genome size and heterozygosity of E. japonica estimation using 17 k-mer distribution. Figure S3. Interchromosomal of Hi-C chromosome contact map of E. japonica genome. Figure S4. Gene structure prediction results of E. japonica and other species. Figure S5. Venn diagram shows gene families of malvids. Figure S6. Phylogenetic tree constructed by chloroplast genomes from 17 species. Figure S7. Concatenated- and ASTRAL-based phylogenetic trees. Figure S8. Ks distribution in E. japonica. Figure S9. Distributions of synonymous substitutions per synonymous site (Ks) of one-to-one orthologs identified between E. japonica and P. trichocarpa and V. vinifera. Figure S10. Population structure plot. Figure S11. Fixation index (FST) heat map among E. japonica populations. Figure S12. Phylogenetic analysis of MADS-box genes from O. sativa, A. thaliana, E. japonica, and T. cacao. Figure S13. Observation the fruit development. Figure S14. Animal seed dispersal. Figure S15. Anthocyanin biosynthesis in E. japonica fruits. Figure S16. Carotenoid accumulation and the chlorophyll degradation in E. japonica fruits. Figure S17. Expression profile of fruit dehiscence-related genes. Figure S18. Phylogenetic tree of DELLA genes obtained from six malvids species. Figure S19. Phylogenetic tree of CAD genes obtained from seven malvids species. Figure S20. Expression pattern of fruit abscission-related genes. Figure S21. Structure of pentacyclic triterpene compounds separated from Euscaphis. Figure S22. Phylogenetic tree of HMGR gene in plants. Figure S23. Phylogenetic tree of P450s gene family obtained from A. thaliana and E. japonica.SUPPLEMENTARY MATERIAL 2: Table S1. Assembled statistics of E. japonica genome. Table S2. Evaluation of E. japonica genome assembly. Table S3. Chromosome length of E. japonica. Table S4. Prediction of gene structures of the E. japonica genome. Table S5. Statistics on the function annotation of the E. japonica genome. Table S6. Non-coding RNA annotation results of E. japonica genome. Table S7. BUSCO assessment of the E. japonica annotated genome. Table S8. Statistic of repeat sequence in E. japonica genome. Table S9. Gene-clustering statistics for 17 species. Table S10. KEGG enrichment result of unique genes families of E. japonica. Table S11. Gene Ontology (GO) and KEGG enrichment result of significant shared by malvids species gene families. Table S12. Gene Ontology (GO) and KEGG enrichment result of significant expansion of E. japonica gene families. Table S13. Gene Ontology (GO) enrichment result of significant contraction of E. japonica gene families. Table S14. Statistical sampling population information. Table S15. Statistics population resequencing information. Table S16. Statistical nucleotide polymorphisms in the populations. Table S17. Candidate positive selection genes (PSGs) in the evergreen population. Table S18. Candidate positive selection genes (PSGs) in the deciduous population. Table S19. Gene Ontology (GO) enrichment result of significant PSGs in the evergreen population. Table S20. List of MADS-box genes identified in E. japonica. Table S21. Genes involved in anthocyanin biosynthesis, carotenoid biosynthesis, and chlorophyll degradation. Table S22. Identification fruit dehiscence-related genes in E. japonica. Table S23. Genes related to lignin synthesis that are highly expressed during pericarp dehiscence. Table S24. Gene expression levels (FPKMs) of fruit abscission-related genes in pericarp. Table S25. Triterpene compounds separated from Euscaphis. Table S26. Number of putative pentacyclic triterpene-related genes in the malvids species. Table S27. Identified pentacyclic triterpene synthesis-related genes in E. japonica genome. Table S28. Statistical simple sequence repeat.Fund for Excellent Doctoral Dissertation of Fujian Agriculture and Forestry University, China; Fujian Provincial Department of Science E. japonica Evolution and Selection of Ornamental Medicinal Resources, China; the Project of Forestry Peak Discipline at Fujian Agriculture and Forestry University, China; the Collection, Development and Utilization of Eascaphis konlshli Germplasm Resources; the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program and from Ghent University.https://onlinelibrary.wiley.com/journal/1365313xam2022BiochemistryGeneticsMicrobiology and Plant Patholog

    Aggregation-Induced Emission (AIE), Life and Health

    Get PDF
    Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health
    • …
    corecore