9 research outputs found

    Discovery of a Unique Structural Motif in Lanthipeptide Synthetases for Substrate Binding and Interdomain Interactions

    Get PDF
    Class III lanthipeptide synthetases catalyze the formation of lanthionine/methyllanthionine and labionin crosslinks. We present here the 2.40 Å resolution structure of the kinase domain of a class III lanthipeptide synthetase CurKC from the biosynthesis of curvopeptin. A unique structural subunit for leader binding, named leader recognition domain (LRD), was identified. The LRD of CurKC is responsible for the recognition of the leader peptide and for mediating interactions between the lyase and kinase domains. LRDs are highly conserved among the kinase domains of class III and class IV lanthipeptide synthetases. The discovery of LRDs provides insight into the substrate recognition and domain organization in multidomain lanthipeptide synthetases

    An Early Warning Method of Distribution System Fault Risk Based on Data Mining

    No full text
    Accurate warning information of potential fault risk in the distribution network is essential to the economic operation as well as the rational allocation of maintenance resources. In this paper, we propose a fault risk warning method for a distribution system based on an improved RelieF-Softmax algorithm. Firstly, four categories including 24 fault features of the distribution system are determined through data investigation and preprocessing. Considering the frequency of distribution system faults, and then their consequences, the risk classification method of the distribution system is presented. Secondly, the K-maxmin clustering algorithm is introduced to improve the random sampling process, and then an improved RelieF feature extraction method is proposed to determine the optimal feature subset with the strongest correlation and minimum redundancy. Finally, the loss function of Softmax is improved to cope with the influence of sample imbalance on the prediction accuracy. The optimal feature subset and Softmax classifier are applied to forewarn the fault risk in the distribution system. The 191-feeder power distribution system in south China is employed to demonstrate the effectiveness of the proposed method

    Analysis of winter diet in Guizhou golden monkey (Rhinopithecus brelichi) using DNA metabarcoding data

    No full text
    Abstract The Guizhou golden monkey (Rhinopithecus brelichi) is a critically endangered wildlife species, and understanding its diet composition may be useful for assessing its feeding strategies. DNA metabarcoding was used to determine the dietary diversity of R. brelichi. DNA was extracted from 31 faecal samples and amplified chloroplast rbcL and mitochondrial COI DNA was sequenced using the Illumina NovaSeq platform. A comparative analysis of the sequences revealed that the five most abundant plant genera were Magnolia, Morinda, Viburnum, Tetradium and Eurya. In winter, R. brelichi mostly consumed shrubs, herbs and shrubs/trees according to the habit of plant genera with higher abundances comparatively. The five most abundant families in animal diet were Psychodidae, Trichinellidae, Staphylinidae, Scarabaeidae and Trichoceridae. This study is the first to show the composition of the winter animal diets of R. brelichi based on DNA metabarcoding. These results provide an important basis for understanding the diet of wild R. brelichi, which inhabits only the Fanjingshan National Nature Reserve, China

    Monolayer Mo1−x−yRexWyS2‐Based Photodetectors Grown by Chemical Vapor Deposition

    No full text
    Abstract The utilization of alloyed 2D transition metal dichalcogenides (TMDs) has become a pivotal approach for addressing challenges in material applications. The judicious selection of dopant constituents offers a potent means to finely modulate the materials' bandgap, consequently broadening the potential applications of 2D materials. In the context of an investigation, Mo1−x−yRexWyS2 is successfully synthesized using chemical vapor deposition. With a bandgap of 1.33 eV, this material exhibits promising prospects for application in the realm of optoelectronics. This advancement enables the fabrication of the Mo1−x−yRexWyS2 photodetector. The rigorous testing and analysis of photoelectric performance reveal significant improvements in both responsivity and response speed compared to analogous detectors. This accomplishment not only furnishes a novel paradigm for the advancement of photodetectors but also contributes fresh insights to the domain of alloyed 2D TMDs
    corecore