11 research outputs found

    Low T-cell Receptor Diversity, High Somatic Mutation Burden, and High Neoantigen Load as Predictors of Clinical Outcome in Muscle-invasive Bladder Cancer

    Get PDF
    AbstractBackgroundThe success of cancer immunotherapies has highlighted the potent ability of local adaptive immune responses to eradicate cancer cells by targeting neoantigens generated by somatic alterations. However, how these factors interact to drive the natural history of muscle-invasive bladder cancer (MIBC) is not well understood.ObjectiveTo investigate the role of immune regulation in MIBC disease progression, we performed massively parallel T-cell receptor (TCR) sequencing of tumor-infiltrating T cells (TILs), in silico neoantigen prediction from exome sequences, and expression analysis of immune-related genes.Design, setting, and participantsWe analyzed 38 MIBC tissues from patients who underwent definitive surgery with a minimum clinical follow-up of 2 yr.Outcome measurements and statistical analysisRecurrence-free survival (RFS) was determined. TCR diversity was quantified using Simpson's diversity index. The main analyses involved the Mann-Whitney U test, Kaplan-Meier survival analysis, and Cox proportional hazards models.Results and limitationsLow TCRβ chain diversity, correlating with oligoclonal TIL expansion, was significantly correlated with longer RFS, even after adjustment for pathologic tumor stage, node status, and receipt of adjuvant chemotherapy (hazard ratio 2.67, 95% confidence interval 1.08–6.60; p=0.03). Patients with both a high number of neoantigens and low TCRβ diversity had longer RFS compared to those with fewer neoantigens and high TCR diversity (median RFS 275 vs 30 wk; p=0.03). Higher expression of immune cytolytic genes was associated with nonrecurrence among patients with low TCR diversity or fewer neoantigens. Limitations include the sample size and the inability to distinguish CD8+ and CD4+ T cells using TCR sequencing.ConclusionsThese findings are the first to show that detailed tumor immune-genome analysis at definitive surgery can identify molecular patterns of antitumor immune response contributing to better clinical outcomes in MIBC.Patient summaryWe discovered that clonal expansion of certain T cells in tumor tissue, possibly targeting cancer-specific antigens, contributes to prevention of bladder cancer recurrence

    Eradication of large solid tumors by gene therapy with a T cell receptor targeting a single cancer-specific point mutation

    No full text
    Purpose: Cancers usually contain multiple unique tumor-specific antigens produced by single amino acid substitutions (AAS) and encoded by somatic non-synonymous single nucleotide substitutions. We determined whether adoptively transferred T cells can reject large, well-established solid tumors when engineered to express a single type of T cell receptor (TCR) that is specific for a single AAS. Experimental Design: By exome and RNA sequencing of an UV-induced tumor, we identified an AAS in p68 (mp68), a co-activator of p53. This AAS seemed to be an ideal tumor-specific neoepitope because it is encoded by a trunk mutation in the primary autochthonous cancer and binds with highest affinity to the MHC. A high-avidity mp68-specific TCR was used to genetically engineer T cells as well as to generate TCR-transgenic mice for adoptive therapy. Results: When the neoepitope was expressed at high levels and by all cancer cells, their direct recognition sufficed to destroy intra-tumor vessels and eradicate large, long-established solid tumors. When the neoepitope was targeted as autochthonous antigen, T cells caused cancer regression followed by escape of antigen-negative variants. Escape could be thwarted by expressing the antigen at increased levels in all cancer cells or by combining T cell therapy with local irradiation. Therapeutic efficacies of TCR-transduced and TCR-transgenic T cells were similar. Conclusions: Gene therapy with a single TCR targeting a single AAS can eradicate large established cancer but a uniform expression and/or sufficient levels of the targeted neoepitope or additional therapy are required to overcome tumor escape

    Image_1_Immunological analysis of hybrid neoantigen peptide encompassing class I/II neoepitope-pulsed dendritic cell vaccine.jpeg

    No full text
    Neoantigens/ are tumor-specific antigens that evade central immune tolerance mechanisms in the thymus. Long-term tumor-specific cytotoxic T lymphocyte activity maintenance requires class II antigen-reactive CD4+ T cells. We had previously shown that intranodal vaccination with class I neoantigen peptide-pulsed dendritic cells (DCs) induced a robust immune response in a subset of patients with metastatic cancer. The present study aimed to perform a detailed ex vivo analysis of immune responses in four patients receiving an intranodal hybrid human leukocyte antigen class II neoantigen peptide encompassing a class I neoantigen epitope (hybrid neoantigen)-pulsed DC vaccine. After vaccination, strong T-cell reactions against the hybrid class II peptide and the class I-binding neoantigen peptide were observed in all four patients. We found that hybrid class II neoantigen peptide-pulsed DCs stimulated CD4+ T cells via direct antigen presentation and CD8+ T cells via cross-presentation. Further, we demonstrated that hybrid class II peptides encompassing multiple class I neoantigen epitope-pulsed DCs could present multiple class I peptides to CD8+ T cells via cross-presentation. Our findings provide insight into the mechanisms underlying hybrid neoantigen-pulsed DC vaccine therapy and suggest future neoantigen vaccine design.</p
    corecore