97 research outputs found

    Network optimisation - A statistical physics perspective

    Get PDF
    Inference and optimisation of real-value edge variables in sparse graphs are studied using the tree based Bethe approximation optimisation algorithms. Equilibrium states of general energy functions involving a large set of real edge-variables that interact at the network nodes are obtained for networks in various cases. These include different cost functions, connectivity values, constraints on the edge bandwidth and the case of multiclass optimisation

    From the physics of interacting polymers to optimizing routes on the London Underground

    Get PDF
    Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii ) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise

    Distributed optimization in transportation and logistics networks

    Get PDF
    Many important problems in communication networks, transportation networks, and logistics networks are solved by the minimization of cost functions. In general, these can be complex optimization problems involving many variables. However, physicists noted that in a network, a node variable (such as the amount of resources of the nodes) is connected to a set of link variables (such as the flow connecting the node), and similarly each link variable is connected to a number of (usually two) node variables. This enables one to break the problem into local components, often arriving at distributive algorithms to solve the problems. Compared with centralized algorithms, distributed algorithms have the advantages of lower computational complexity, and lower communication overhead. Since they have a faster response to local changes of the environment, they are especially useful for networks with evolving conditions. This review will cover message-passing algorithms in applications such as resource allocation, transportation networks, facility location, traffic routing, and stability of power grids

    A Case for Multi-key Secure Video Proxy: Theory, Design and Implementation

    Get PDF

    Sustainable Supply Chain Management with NGOs, NPOs, and Charity Organizations: A Systematic Review and Research Agenda

    Get PDF
    With the gradually increased awareness of sustainability development, external organizations, including non-governmental organizations (NGOs), non-profit organizations (NPOs), and charity organizations, play an increasingly crucial role in sustainable supply chain management (SSCM). The participation of external organizations not only helps the firms to improve reputation, but also regulates and improves their SSCM. Based on this motivation, we identify the major research domains and examine each domain's evolution by using the objective review methods, including Citation Network Analysis and Main Path Analysis in this literature review paper. Five research domains are recognized, namely, “sustainable supply chain framework design”, “supply chain coordination/collaboration”, “closed-loop supply chain”, “regulation”, and “subsidy and donation”. We review the most influential papers in each research domain to show the evolution of these studies. Based on our review findings, we successfully propose four future research agendas with eight specific issues and innovatively establish a new research framework. The outputs of this review paper can guide the researchers on future search topics and contribute to the development of SSCM with the consideration of organizations.</p

    Optimal load shedding in electricity grids with renewable sources via message passing

    Get PDF
    The increased penetration of volatile and intermittent renewable energy sources challenges existing power-distribution methods as current dispatch methods were not designed to consider high levels of volatility. We suggest a principled algorithm called message passing, which complements existing techniques. It is based on statistical physics methodology and passes probabilistic messages locally to find the approximate global optimal solution for a given objective function. The computational complexity of the algorithm increases linearly with the system size, allowing one to solve large-scale problems. We show how message passing considers fluctuations effectively and prioritise consumers in the event of insufficient resource. We demonstrate the efficacy of the algorithm in managing load-shedding and power-distribution on synthetic benchmark IEEE data and discuss the role of weights in the trade-off between minimising load-shedding and transmission costs

    Variational approximation for mixtures of linear mixed models

    Full text link
    Mixtures of linear mixed models (MLMMs) are useful for clustering grouped data and can be estimated by likelihood maximization through the EM algorithm. The conventional approach to determining a suitable number of components is to compare different mixture models using penalized log-likelihood criteria such as BIC.We propose fitting MLMMs with variational methods which can perform parameter estimation and model selection simultaneously. A variational approximation is described where the variational lower bound and parameter updates are in closed form, allowing fast evaluation. A new variational greedy algorithm is developed for model selection and learning of the mixture components. This approach allows an automatic initialization of the algorithm and returns a plausible number of mixture components automatically. In cases of weak identifiability of certain model parameters, we use hierarchical centering to reparametrize the model and show empirically that there is a gain in efficiency by variational algorithms similar to that in MCMC algorithms. Related to this, we prove that the approximate rate of convergence of variational algorithms by Gaussian approximation is equal to that of the corresponding Gibbs sampler which suggests that reparametrizations can lead to improved convergence in variational algorithms as well.Comment: 36 pages, 5 figures, 2 tables, submitted to JCG

    Body appreciation around the world: Measurement invariance of the Body Appreciation Scale-2 (BAS-2) across 65 nations, 40 languages, gender identities, and age.

    Get PDF
    The Body Appreciation Scale-2 (BAS-2) is a widely used measure of a core facet of the positive body image construct. However, extant research concerning measurement invariance of the BAS-2 across a large number of nations remains limited. Here, we utilised the Body Image in Nature (BINS) dataset - with data collected between 2020 and 2022 - to assess measurement invariance of the BAS-2 across 65 nations, 40 languages, gender identities, and age groups. Multi-group confirmatory factor analysis indicated that full scalar invariance was upheld across all nations, languages, gender identities, and age groups, suggesting that the unidimensional BAS-2 model has widespread applicability. There were large differences across nations and languages in latent body appreciation, while differences across gender identities and age groups were negligible-to-small. Additionally, greater body appreciation was significantly associated with higher life satisfaction, being single (versus being married or in a committed relationship), and greater rurality (versus urbanicity). Across a subset of nations where nation-level data were available, greater body appreciation was also significantly associated with greater cultural distance from the United States and greater relative income inequality. These findings suggest that the BAS-2 likely captures a near-universal conceptualisation of the body appreciation construct, which should facilitate further cross-cultural research. [Abstract copyright: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that have already been identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total source-frame mass M > 70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper limit for the merger rate density of high-mass binaries with eccentricities 0 < e ≤ 0.3 at 16.9 Gpc−3 yr−1 at the 90% confidence level
    corecore