106 research outputs found
A Micro-RNA Connection in BRafV600E-Mediated Premature Senescence of Human Melanocytes
Recent high-throughput-sequencing of the cancer genome has identified oncogenic mutations in BRaf genetic locus as one of the critical events in melanomagenesis. In normal cells, the activity of BRaf is tightly regulated. Gain-of-function mutations like those identified in melanoma frequently lead to enhanced cell-survival and unrestrained growth. The activating mutation of BRaf will also induce the cells to senesce. However, the mechanism by which the oncogenic BRaf induces the senescent barrier remains poorly defined. microRNAs have regulatory functions toward the expression of genes that are important in carcinogenesis. Here we show that expression of several microRNAs is altered when the oncogenic version of BRaf is introduced in cultured primary melanocytes and these cells undergo premature cellular senescence. These include eight microRNAs whose expression rates are significantly stimulated and three that are repressed. While most of the induced microRNAs have documented negative effects on cell cycle progression, one of the repressed microRNAs has proven oncogenic functions. Ectopic expression of some of these induced microRNAs increased the expression of senescence markers and induced growth arrest and senescence in primary melanocytes. Taken together, our results suggest that the change in microRNA expression rates may play a vital role in senescence induced by the oncogenic BRaf
The Effect of Compositional Context on Synthetic Gene Networks
It is well known that synthetic gene expression is highly sensitive to how genetic elements (promoter structure, spacing regions between promoter and coding sequences, ribosome binding sites, etc.) are spatially configured. An important topic that has received far less attention is how the compositional context, or spatial arrangement, of entire genes within a synthetic gene network affects their individual expression levels. In this paper we show, both quantitatively and qualitatively, that compositional context significantly alters transcription levels in synthetic gene networks. We demonstrate that key characteristics of gene induction, such as ultra-sensitivity and dynamic range, strongly depend on compositional context. We postulate that supercoiling can be used to explain this interference and validate this hypothesis through modeling and a series of in vitro supercoiling relaxation experiments. This compositional interference enables a novel form of feedback in synthetic gene networks. We illustrate the use of this feedback by redesigning the toggle switch to incorporate compositional context. We show the context-optimized toggle switch has improved threshold detection and memory properties
Biophysical Constraints Arising from Compositional Context in Synthetic Gene Networks
Synthetic gene expression is highly sensitive to intragenic compositional context (promoter structure, spacing regions between promoter and coding sequences, and ribosome binding sites). However, much less is known about the effects of intergenic compositional context (spatial arrangement and orientation of entire genes on DNA) on expression levels in synthetic gene networks. We compare expression of induced genes arranged in convergent, divergent, or tandem orientations. Induction of convergent genes yielded up to 400% higher expression, greater ultrasensitivity, and dynamic range than divergent- or tandem-oriented genes. Orientation affects gene expression whether one or both genes are induced. We postulate that transcriptional interference in divergent and tandem genes, mediated by supercoiling, can explain differences in expression and validate this hypothesis through modeling and in vitro supercoiling relaxation experiments. Treatment with gyrase abrogated intergenic context effects, bringing expression levels within 30% of each other. We rebuilt the toggle switch with convergent genes, taking advantage of supercoiling effects to improve threshold detection and switch stability
Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)
Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio
Frequency drift in MR spectroscopy at 3T
Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p
The United States COVID-19 Forecast Hub dataset
Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data
© 2019 American Physical Society. We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. Three different semicoherent methods are used to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from -1×10-8 to 2×10-9 Hz/s. None of these searches has found clear evidence for a CW signal, so upper limits on the gravitational-wave strain amplitude are calculated, which for this broad range in parameter space are the most sensitive ever achieved
The psychological science accelerator’s COVID-19 rapid-response dataset
In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data
In COVID-19 Health Messaging, Loss Framing Increases Anxiety with Little-to-No Concomitant Benefits: Experimental Evidence from 84 Countries
The COVID-19 pandemic (and its aftermath) highlights a critical need to communicate health information effectively to the global public. Given that subtle differences in information framing can have meaningful effects on behavior, behavioral science research highlights a pressing question: Is it more effective to frame COVID-19 health messages in terms of potential losses (e.g., "If you do not practice these steps, you can endanger yourself and others") or potential gains (e.g., "If you practice these steps, you can protect yourself and others")? Collecting data in 48 languages from 15,929 participants in 84 countries, we experimentally tested the effects of message framing on COVID-19-related judgments, intentions, and feelings. Loss- (vs. gain-) framed messages increased self-reported anxiety among participants cross-nationally with little-to-no impact on policy attitudes, behavioral intentions, or information seeking relevant to pandemic risks. These results were consistent across 84 countries, three variations of the message framing wording, and 560 data processing and analytic choices. Thus, results provide an empirical answer to a global communication question and highlight the emotional toll of loss-framed messages. Critically, this work demonstrates the importance of considering unintended affective consequences when evaluating nudge-style interventions
- …