109 research outputs found

    Solvothermal synthesis and characterization of ytterbium/iron mixed oxide nanoparticles with potential functionalities for applications as multiplatform contrast agent in medical image techniques

    Get PDF
    A solvothermal route to prepare Glutathione capped hybrid ytterbium/iron oxide nanoparticles with potential applications as multiplatform contrast agent in medical image techniques has been developed. The influence of ytterbium/iron molar ratio used as precursor, as well as the degree of the autoclave filling on the structural and morphological characteristics of the obtained nanoparticles has been extensively studied. Although all nanoparticles present similar composition, with YbFeO3 being the majority phase, size and morphology of the as synthetized nanoparticles are highly influenced by the critical temperature and by the over -saturation reached during the solvothermal process. We have demonstrated that glutathione properly functionalizes the hybrid nanoparticles, increasing their colloidal stability and decreasing their cytotoxicity. Additionally, they show good imaging in magnetic resonance and X-ray computerized tomography, thereby indicating promising potential as a dual contrast agent. This work presents, for the first time, glutathione functionalized ytterbium/iron oxide nanoparticles with potential applications in Biomedicine. © 2022 Elsevier Ltd and Techna Group S.r.l

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    ILC3 function as a double-edged sword in inflammatory bowel diseases

    Get PDF
    Inflammatory bowel diseases (IBD), composed mainly of Crohn’s disease (CD) and ulcerative colitis (UC), are strongly implicated in the development of intestinal inflammation lesions. Its exact etiology and pathogenesis are still undetermined. Recently accumulating evidence supports that group 3 innate lymphoid cells (ILC3) are responsible for gastrointestinal mucosal homeostasis through moderate generation of IL-22, IL-17, and GM-CSF in the physiological state. ILC3 contribute to the progression and aggravation of IBD while both IL-22 and IL-17, along with IFN-γ, are overexpressed by the dysregulation of NCR− ILC3 or NCR+ ILC3 function and the bias of NCR+ ILC3 towards ILC1 as well as regulatory ILC dysfunction in the pathological state. Herein, we feature the group 3 innate lymphoid cells’ development, biological function, maintenance of gut homeostasis, mediation of IBD occurrence, and potential application to IBD therapy

    Aquaporins and (in)fertility: More than just water transport

    No full text
    Aquaporins (AQPs) are a family of channel proteins that facilitate the transport of water and small solutes across biological membranes. They are widely distributed throughout the organism, having a number of key functions, some of them unexpected, both in health and disease. Among the various diseases in which AQPs are involved, infertility has been overlooked. According to the World Health Organization (WHO) infertility is a global public health problem with one third of the couples suffering from subfertility or even infertility due to male or female factors alone or combined. Thus, there is an urgent need to unveil the molecular mechanisms that control gametes production, maturation and fertilization-related events, to more specifically determine infertility causes. In addition, as more couples seek for fertility treatment through assisted reproductive technologies (ART), it is pivotal to understand how these techniques can be improved. AQPs are heterogeneously expressed throughout the male and female reproductive tracts, highlighting a possible regulatory role for these proteins in conception. In fact, their function, far beyond water transport, highlights potential intervention points to enhance ART. In this review we discuss AQPs distribution and structural organization, functions, and modulation throughout the male and female reproductive tracts and their relevance to the reproductive success. We also highlight the most recent advances and research trends regarding how the different AQPs are involved and regulated in specific mechanisms underlying (in)fertility. Finally, we discuss the involvement of AQPs in ART-related processes and how their handling can lead to improvement of infertility treatment

    Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of zeta potential, shape and biocorona formation

    No full text
    Over the last decades, the growth in nanotechnology has provoked an increase in the number of its applications and consumer products that incorporate nanomaterials in their formulation. Metal nanoparticles are released to the marine environment and they can interact with cells by colloids forces establish a nano-bio interface. This interface can be compatible or generate bioadverse effects to cells. The daily use of CeO2 nanoparticles (CeO2 NPs) in industrial catalysis, sunscreen, fuel cells, fuel additives and biomedicine and their potential release into aquatic environments has turned them into a new emerging pollutant of concern. It is necessary to assess of effects of CeO2 NPs in aquatic organisms and understand the potential mechanisms of action of CeO2 NP toxicity to improve our knowledge about the intrinsic and extrinsic characteristic of CeO2 NPs and the interaction of CeO2 NPs with biomolecules in different environment and biological fluids. The conserved innate immune system of bivalves represents a useful tool for studying immunoregulatory responses when cells are exposed to NPs. In this context, the effects of two different CeO2 NPs with different physico-chemical characteristics (size, shape, zeta potential and Ce+3/Ce+4 ratio) and different behavior with biomolecules in plasma fluid were studied in a series of in vitro assays using primary hemocytes from Mytilus galloprovincialis. Different cellular responses such as lysosome membrane stability, phagocytosis capacity and extracellular reactive oxygen species (ROS) production were evaluated. Our results indicate that the agglomeration state of CeO2 NPs in the exposure media did not appear to have a substantial role in particle effects, while differences in shape, zeta potential and biocorona formation in NPs appear to be important in provoking negative impacts on hemocytes. The negative charge and the rounded shape of CeO2 NPs, which formed Cu, Zn-SOD biocorona in hemolymph serum (HS), triggered higher changes in the biomarker of stress (LMS) and immunological parameters (ROS and phagocytosis capacity). On the other hand, the almost neutral surface charge and well-faceted shape of CeO2 NPs did not show either biocorona formation in HS under tested conditions or significant responses. According to the results, the most relevant conclusion of this work is that not only the physicochemical characterization of CeO2 NPs plays an important role in NPs toxicity but also the study of the interaction of NPs with biological fluids is essential to know it behavior and toxicity at cellular level.Over the last decades, the growth in nanotechnology has provoked an increase in the number of its applications and consumer products that incorporate nanomaterials in their formulation. Metal nanoparticles are released to the marine environment and they can interact with cells by colloids forces establish a nano-bio interface. This interface can be compatible or generate bioadverse effects to cells. The daily use of CeO2 nanoparticles (CeO2 NPs) in industrial catalysis, sunscreen, fuel cells, fuel additives and biomedicine and their potential release into aquatic environments has turned them into a new emerging pollutant of concern. It is necessary to assess of effects of CeO2 NPs in aquatic organisms and understand the potential mechanisms of action of CeO2 NP toxicity to improve our knowledge about the intrinsic and extrinsic characteristic of CeO2 NPs and the interaction of CeO2 NPs with biomolecules in different environment and biological fluids. The conserved innate immune system of bivalves represents a useful tool for studying immunoregulatory responses when cells are exposed to NPs. In this context, the effects of two different CeO2 NPs with different physico-chemical characteristics (size, shape, zeta potential and Ce+3/Ce+4 ratio) and different behavior with biomolecules in plasma fluid were studied in a series of in vitro assays using primary hemocytes from Mytilus galloprovincialis. Different cellular responses such as lysosome membrane stability, phagocytosis capacity and extracellular reactive oxygen species (ROS) production were evaluated. Our results indicate that the agglomeration state of CeO2 NPs in the exposure media did not appear to have a substantial role in particle effects, while differences in shape, zeta potential and biocorona formation in NPs appear to be important in provoking negative impacts on hemocytes. The negative charge and the rounded shape of CeO2 NPs, which formed Cu, Zn-SOD biocorona in hemolymph serum (HS), triggered higher changes in the biomarker of stress (LMS) and immunological parameters (ROS and phagocytosis capacity). On the other hand, the almost neutral surface charge and well-faceted shape of CeO2 NPs did not show either biocorona formation in HS under tested conditions or significant responses. According to the results, the most relevant conclusion of this work is that not only the physicochemical characterization of CeO2 NPs plays an important role in NPs toxicity but also the study of the interaction of NPs with biological fluids is essential to know it behavior and toxicity at cellular level

    Epithelial Na +

    No full text
    • …
    corecore