280 research outputs found

    An algorithm for simulating the Ising model on a type-II quantum computer

    Full text link
    Presented here is an algorithm for a type-II quantum computer which simulates the Ising model in one and two dimensions. It is equivalent to the Metropolis Monte-Carlo method and takes advantage of quantum superposition for random number generation. This algorithm does not require the ensemble of states to be measured at the end of each iteration, as is required for other type-II algorithms. Only the binary result is measured at each node which means this algorithm could be implemented using a range of different quantum computing architectures. The Ising model provides an example of how cellular automata rules can be formulated to be run on a type-II quantum computer.Comment: 14 pages, 11 figures. Accepted for publication in Computer Physics Communication

    A computer aided approach for river styles-inspired characterization of large basins: The Magdalena river (Colombia)

    Get PDF
    This paper addresses the geomorphic characterization and classification of large rivers in a framework of scarce information. This is inspired by the River Styles Framework with some modifications that make the process more straightforward and accessible to practitioners and more applicable to large basins, while reducing the subjective, expert-based inputs, as the process is now more systematic. To this aim, it utilizes innovative criteria and some computer-aided procedures and tools based on GIS, Excel and Python. This approach sheds light on the character and the behavior of rivers, which is key to informing planning, management and restoration. The application to the Magdalena River (Colombia) illustrates the characterization and classification process and the type of results, which ultimately highlight the great geomorphic diversity of that river. The process is applicable to many other rivers worldwide

    One-dimensional hydrogen atom with minimal length uncertainty and maximal momentum

    Full text link
    We present exact energy eigenvalues and eigenfunctions of the one-dimensional hydrogen atom in the framework of the Generalized (Gravitational) Uncertainty Principle (GUP). This form of GUP is consistent with various theories of quantum gravity such as string theory, loop quantum gravity, black-hole physics, and doubly special relativity and implies a minimal length uncertainty and a maximal momentum. We show that the quantized energy spectrum exactly agrees with the semiclassical results.Comment: 10 pages, 1 figur

    Relativistic quantum mechanics of a Dirac oscillator

    Get PDF
    The Dirac oscillator is an exactly soluble model recently introduced in the context of many particle models in relativistic quantum mechanics. The model has been also considered as an interaction term for modelling quark confinement in quantum chromodynamics. These considerations should be enough for demonstrating that the Dirac oscillator can be an excellent example in relativistic quantum mechanics. In this paper we offer a solution to the problem and discuss some of its properties. We also discuss a physical picture for the Dirac oscillator's non-standard interaction, showing how it arises on describing the behaviour of a neutral particle carrying an anomalous magnetic moment and moving inside an uniformly charged sphere.Comment: 19 pages, 1 figur

    Recent Budget of Hydroclimatology and Hydrosedimentology of the Congo River in Central Africa

    Get PDF
    Although the Congo Basin is still one of the least studied river basins in the world, this paper attempts to provide a multidisciplinary but non-exhaustive synthesis on the general hydrology of the Congo River by highlighting some points of interest and some particular results obtained over a century of surveys and scientific studies. The Congo River is especially marked by its hydrological regularity only interrupted by the wet decade of 1960, which is its major anomaly over nearly 120 years of daily observations. Its interannual flow is 40,500 m3 s−1. This great flow regularity should not hide important spatial variations. As an example, we can cite the Ubangi basin, which is the most northern and the most affected by a reduction in flow, which has been a cause for concern since 1970 and constitutes a serious hindrance for river navigation. With regard to material fluxes, nearly 88 × 106 tonnes of material are exported annually from the Congo Basin to the Atlantic Ocean, composed of 33.6 × 106 tonnes of TSS, 38.1 × 106 tonnes of TDS and 16.2 × 106 tonnes of DOC. In this ancient flat basin, the absence of mountains chains and the extent of its coverage by dense rainforest explains that chemical weathering (10.6 t km−2 year−1 of TDS) slightly predominates physical erosion (9.3 t km−2 year−1 of TSS), followed by organic production (4.5 t km−2 year−1 of DOC). As the interannual mean discharges are similar, it can be assumed that these interannual averages of material fluxes, calculated over the longest period (2006–2017) of monthly monitoring of its sedimentology and bio-physical-chemistry, are therefore representative of the flow record available since 1902 (with the exception of the wet decade of 1960). Spatial heterogeneity within the Congo Basin has made it possible to establish an original hydrological classification of right bank tributaries, which takes into account vegetation cover and lithology to explain their hydrological regimes. Those of the BatĂ©kĂ© plateau present a hydroclimatic paradox with hydrological regimes that are among the most stable on the planet, but also with some of the most pristine waters as a result of the intense drainage of an immense sandy-sandstone aquifer. This aquifer contributes to the regularity of the Congo River flows, as does the buffer role of the mysterious “Cuvette Centrale”. As the study of this last one sector can only be done indirectly, this paper presents its first hydrological regime calculated by inter-gauging station water balance. Without neglecting the indispensable in situ work, the contributions of remote sensing and numerical modelling should be increasingly used to try to circumvent the dramatic lack of field data that persists in this basin

    Non-congenital severe ocular complications of Zika virus infection

    Get PDF
    In 2016, during a major Zika virus (ZIKV) outbreak in Maracaibo, Venezuela, a 49-year-old woman and an unrelated 4-year-old boy developed bilateral optic neuritis 2–3 weeks after presenting an acute febrile illness characterized by low-grade fever, rash and myalgia [1]. Both patients presented sudden, painless bilateral loss of vision with no corneal or uveal abnormalities. Fundoscopic examination revealed oedema of the optic nerve and optic disc pallor. Optical coherence tomography confirmed bilateral optic nerve head swelling in the case of the adult, but it was not carried out in the child. Automated perimetry performed in the adult revealed bilateral diffuse visual field loss. Magnetic resonance imaging of the brain in both cases was unremarkable. Both patients were diagnosed with bilateral optic neuritis of possible infectious or parainfectious origin. Differential diagnoses that were considered and subsequently discarded included arteritic and non-arteritic ischaemic optic neuropathy, and brain disorders such as multiple sclerosis and brain tumours. Both patients were seropositive for anti-ZIKV IgG and seronegative for anti-ZIKV IgM. In addition, both patients were positive for anti-dengue virus (DENV) IgG for all four DENV serotypes. Management included intravenous methylprednisolone for 3 days, followed by oral prednisolone for 11 days. Although the patients presented a modest improvement in their vision, they continued to have visual impairment after several months of follow-up [1]

    Optic neuropathy and congenital glaucoma associated with probable Zika virus infection in Venezuelan patients

    Get PDF
    Introduction: Although the current Zika virus (ZIKV) epidemic is a major public health concern, most reports have focused on congenital ZIKV syndrome, its most devastating manifestation. Severe ocular complications associated with ZIKV infections and possible pathogenetic factors are rarely described. Here, we describe three Venezuelan patients who developed severe ocular manifestations following ZIKV infections. We also analyse their serological response to ZIKV and dengue virus (DENV). Case presentation: One adult with bilateral optic neuritis, a child of 4 years of age with retrobulbar neuritis [corrected]. and a newborn with bilateral congenital glaucoma had a recent history of an acute exanthematous infection consistent with ZIKV infection. The results of ELISA tests indicated that all patients were seropositive for ZIKV and four DENV serotypes. Conclusion: Patients with ZIKV infection can develop severe ocular complications. Anti-DENV antibodies from previous infections could play a role in the pathogenesis of these complications. Well-designed epidemiological studies are urgently needed to measure the risk of ZIKV ocular complications and confirm whether they are associated with the presence of anti-flaviviral antibodies

    Quantum cellular automata quantum computing with endohedral fullerenes

    Get PDF
    We present a scheme to perform universal quantum computation using global addressing techniques as applied to a physical system of endohedrally doped fullerenes. The system consists of an ABAB linear array of Group V endohedrally doped fullerenes. Each molecule spin site consists of a nuclear spin coupled via a Hyperfine interaction to an electron spin. The electron spin of each molecule is in a quartet ground state S=3/2S=3/2. Neighboring molecular electron spins are coupled via a magnetic dipole interaction. We find that an all-electron construction of a quantum cellular automata is frustrated due to the degeneracy of the electronic transitions. However, we can construct a quantum celluar automata quantum computing architecture using these molecules by encoding the quantum information on the nuclear spins while using the electron spins as a local bus. We deduce the NMR and ESR pulses required to execute the basic cellular automata operation and obtain a rough figure of merit for the the number of gate operations per decoherence time. We find that this figure of merit compares well with other physical quantum computer proposals. We argue that the proposed architecture meets well the first four DiVincenzo criteria and we outline various routes towards meeting the fifth criteria: qubit readout.Comment: 16 pages, Latex, 5 figures, See http://planck.thphys.may.ie/QIPDDF/ submitted to Phys. Rev.
    • 

    corecore