143 research outputs found

    The Korean Chip Dumping Controversy: Are They Accused of Violating an Unjust Law

    Get PDF

    Post-Treatment of Nanofiltration Polyamide Membrane through Alkali-Catalyzed Hydrolysis to Treat Dyes in Model Wastewater

    Get PDF
    This research focused on the influence of post-treatment using alkali-catalyzed hydrolysis with a full-aromatic nanofiltration (NF) polyamide membrane and its application to the efficient removal of selected dyes. The post-treated membranes were characterized through Fourier transform infrared spectroscopy, goniometry, and zeta-potential analysis to analyze the treatment-induced changes in the intrinsic properties of the membrane. Furthermore, the changes in permeability induced by the post-treatment were evaluated via the measurement of water flux, NaCl rejection, and molecular weight cutoff (MWCO) under different pH conditions and post-treatment times. Major changes induced by the post-treatment in terms of physicochemical properties were the enhancement of permeability, hydrophilicity, and negative charge due to the hydrolysis of the membrane’s amide bonds. Four different dyes were selected as representative organic pollutants considering the MWCO of the post-treated membranes. Compared with the pristine NF membrane, membranes post-treated at pH 13.5 showed better water flux with similar rejection of the target dyes. On the basis of these results, the proposed post-treatment method for NF membranes can be applied to the removal of organic pollutants of various size

    Removal of Total Dissolved Solids from Reverse Osmosis Concentrates from a Municipal Wastewater Reclamation Plant by Aerobic Granular Sludge

    Get PDF
    Reverse osmosis (RO) has been widely utilized in water reclamation plants and produces a concentrated brine (or reject) stream as a by-product. RO concentrates (ROC) contain vast quantities of salts and dissolved organic matter, such as biomass and humic-like substances, which hinder biological wastewater treatment (such as biological nitrogen removal). In this study, we cultivated granular sludge in an aerobic sequencing batch reactor to treat municipal wastewater with an organic loading rate of 2.1–4.3 kgCOD/m3 day at room temperature (25 °C), and remove total dissolved solids (TDS) from ROC by biosorption, with aerobic granular sludge as a novel biosorbent. The results of the kinetic experiments demonstrated that TDS removal by aerobic granular sludge was more rapid than that by other coagulants and adsorbents (i.e., calcium hydroxide, polyaluminum chloride, activated sludge, powdered activated carbon, granular activated carbon, and zeolite) under optimal treatment conditions. The biosorption of TDS on the aerobic granular sludge was well-modeled by the Lagergren first-order model, with a maximum biosorption capacity of 1698 mg/g. Thus, aerobic granular sludge could be effective as a regenerable biosorbent for removing the TDS in ROC from municipal wastewater

    Preparation of Activated Biochar-Supported Magnetite Composite for Adsorption of Polychlorinated Phenols from Aqueous Solutions

    Get PDF
    For this study, we applied activated biochar (AB) and its composition with magnetite (AB-Fe3O4) as adsorbents for the removal of polychlorophenols in model wastewater. We comprehensively characterized these adsorbents and performed adsorption tests under several experimental parameters. Using FTIR, we confirmed successful synthesis of AB-Fe3O4 composite through cetrimonium bromide surfactant. We conducted adsorption tests using AB and AB-Fe3O4 to treat model wastewater containing polychlorophenols, such as 2,3,4,6-Tetrachlorophenol (TeCP), 2,4,6-Trichlorophenol (TCP), and 2,4-Dichlorophenol (DCP). Results of the isotherm and the kinetic experiments were well adapted to Freundlich’s isotherm model and the pseudo-second-order kinetic model, respectively. Main adsorption mechanisms in this study were attributed to non-covalent, π-electron acceptor–donor interactions and hydrophobic interactions judging from the number of chloride elements in each chlorophenol and its hydrophobic characteristics. We also considered the electrostatic repulsion effect between TeCP and AB, because adsorption performance of TeCP at basic condition was slightly worse than at weak acidic condition. Lastly, AB-Fe3O4 showed high adsorption selectivity of TeCP compared to other persistent organic pollutants (i.e., bisphenol A and sulfamethoxazole) due to hydrophobic interactions. We concluded that AB-Fe3O4 may be used as novel adsorbent for wastewater treatment including toxic and hydrophobic organic pollutants (e.g., TeCP)

    Sonodegradation of amitriptyline and ibuprofen in the presence of Ti3C2Tx MXene

    Get PDF
    This study, which investigated the sonodegradation of selected pharmaceutical active compounds (PhACs) (amitriptyline (AMT) and ibuprofen (IBP)) with MXene, was carried out in an aqueous solution. To investigate the practicality of the degradation process, the experiments were conducted in various water quality conditions, including pH, temperature, natural organic matter, and ionic strength. Based on the experimental results, the produced hydrogen peroxide, which could be a representative of the produced OH radicals, was a vital factor that affected the degradation performance of both PhACs. To confirm the importance of OH radicals, the effect of a OH radical promoter (H2O2) and scavenger (t-BuOH) was also studied. In addition, the synergism between ultrasonication (US) and MXene was evaluated with the rate constants of US only, MXene only, and a US/MXene combined system. Mineralization of the PhACs was also investigated, and removal of AMT was higher than that of IBP, which could be attributed to the physicochemical properties of the compounds and enhanced adsorption by the well-dispersed MXene. Overall, utilization of MXene by means of ultrasonication could enhance the removal performance of PhACs in water

    Differences in Circulating Dendritic Cell Subtypes in Pregnant Women, Cord Blood and Healthy Adult Women

    Get PDF
    Different subtypes of dendritic cells (DC) influence the differentiation of naíve T lymphocytes into T helper type 1 (Th1) and Th2 effector cells. We evaluated the percentages of DC subtypes in peripheral blood from pregnant women (maternal blood) and their cord blood compared to the peripheral blood of healthy non pregnant women (control). Circulating DC were identified by flow cytometry as lineage (CD3, CD14, CD16, CD19, CD20, and CD56)-negative and HLA-DR-positive cells. Subtypes of DC were further characterized as myeloid DC (CD11c+/CD123±), lymphoid DC (CD11c-/CD123+++) and less differentiated DC (CD11c-/CD123±). The frequency of DC out of all nucleated cells was significantly lower in maternal blood than in control (P<0.001). The ratio of myeloid DC/lymphoid DC was significantly higher in maternal blood than in control (P<0.01). HLA-DR expressions of myeloid DC as mean fluorescence intensity (MFI) were significantly less in maternal blood and in cord blood than in control (P<0.001, respectively). The DC differentiation factors, TNF-α and GM-CSF, released from mononuclear cells after lipopolysaccharide stimulation were significantly lower in maternal blood than in control (P<0.01). The distribution of DC subtypes was different in maternal and cord blood from those of non-pregnant women. Their role during pregnancy remains to be determined

    Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications

    Get PDF

    Forging a Moral Basis for Emerging Economies

    No full text
    &lt;p&gt;Aristotle said that politics is the master science. What he calls politics is not what is now called political science but the culmination of ethics. Per Aristotle, economics, a dimension of ethics, posits the eudaimonia (human flourishing or well-being, erroneously translated as happiness) or summum bonum for human society and describes the regional structures of human social existence. Economics cannot, therefore, be a positive science but must be a normative science.&lt;br&gt;Morality has disappeared from economics being taught at American universities. The prevailing paradigm adopted by mainstream economics is Homo Economicus, which is the "wrong reduction of a man." Such a gross reduction of a human into a rational agent who maximizes his utility subject to the given budget constraint leaves dormant higher human values (compassion, empathy, brotherhood, and sisterhood, to name a few), and this mechanical decision-maker is likely to destroy himself and the society in which he operates.&lt;br&gt;Economics (taught and practiced in America) is the fish that has jumped out of its pond and is now dying of thirst. Ethics is the water that gives it life. The best way to save it is to bring economics back to the pond where it belongs. What is truly needed is a paradigm shift in the teaching and practice of economics.&lt;br&gt;Last but not least, economists in emerging countries should forge a moral basis for their national economy and form a vision of how to construct a system of political economy that will achieve the maximum well-being of the citizens and social justice. In doing so, they should synthesize their normative value judgments with scientific perspectives in economics. Old, labelled models like capitalism and socialism are modifiable constructs.&lt;/p&gt
    corecore