89 research outputs found

    Editorial: Ion Homeostasis in Plant Stress and Development

    Full text link
    This paper was funded by grants PID2019-104054GB-I00 and RTC-2017-6468-2-AR from the Spanish "Agencia Estatal de Investigacion".Mulet, JM.; Campos, F.; Yenush, L. (2020). Editorial: Ion Homeostasis in Plant Stress and Development. Frontiers in Plant Science. 11:1-3. https://doi.org/10.3389/fpls.2020.618273S1311Bromham, L., Hua, X., & Cardillo, M. (2020). Macroevolutionary and macroecological approaches to understanding the evolution of stress tolerance in plants. Plant, Cell & Environment, 43(12), 2832-2846. doi:10.1111/pce.13857Colmenero-Flores, J. M., Franco-Navarro, J. D., Cubero-Font, P., Peinado-Torrubia, P., & Rosales, M. A. (2019). Chloride as a Beneficial Macronutrient in Higher Plants: New Roles and Regulation. International Journal of Molecular Sciences, 20(19), 4686. doi:10.3390/ijms20194686Dreyer, I., & Uozumi, N. (2011). Potassium channels in plant cells. FEBS Journal, 278(22), 4293-4303. doi:10.1111/j.1742-4658.2011.08371.xFlowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: adaptations in halophytes. Annals of Botany, 115(3), 327-331. doi:10.1093/aob/mcu267Galvan-Ampudia, C. S., Julkowska, M. M., Darwish, E., Gandullo, J., Korver, R. A., Brunoud, G., … Testerink, C. (2013). Halotropism Is a Response of Plant Roots to Avoid a Saline Environment. Current Biology, 23(20), 2044-2050. doi:10.1016/j.cub.2013.08.042Korver, R. A., Berg, T., Meyer, A. J., Galvan‐Ampudia, C. S., Tusscher, K. H. W. J., & Testerink, C. (2019). Halotropism requires phospholipase Dζ1‐mediated modulation of cellular polarity of auxin transport carriers. Plant, Cell & Environment, 43(1), 143-158. doi:10.1111/pce.13646Locascio, A., Marqués, M. C., García-Martínez, G., Corratgé-Faillie, C., Andrés-Colás, N., Rubio, L., … Yenush, L. (2019). BCL2-ASSOCIATED ATHANOGENE4 Regulates the KAT1 Potassium Channel and Controls Stomatal Movement. Plant Physiology, 181(3), 1277-1294. doi:10.1104/pp.19.00224Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. doi:10.1016/j.abb.2005.10.018Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., … Bouwmeester, H. (2010). Physiological Effects of the Synthetic Strigolactone Analog GR24 on Root System Architecture in Arabidopsis: Another Belowground Role for Strigolactones?      . Plant Physiology, 155(2), 721-734. doi:10.1104/pp.110.16664

    The Biostimulant, Potassium Humate Ameliorates Abiotic Stress in Arabidopsis thaliana by Increasing Starch Availability

    Full text link
    [EN] Potassium humate is a widely used biostimulant known for its ability to enhance growth and improve tolerance to abiotic stress. However, the molecular mechanisms explaining its effects remain poorly understood. In this study, we investigated the mechanism of action of potassium humate using the model plant Arabidopsis thaliana. We demonstrated that a formulation of potassium humate effectively increased the fresh weight accumulation of Arabidopsis plants under normal conditions, salt stress (sodium or lithium chloride), and particularly under osmotic stress (mannitol). Interestingly, plants treated with potassium humate exhibited a reduced antioxidant response and lower proline accumulation, while maintaining photosynthetic activity under stress conditions. The observed sodium and osmotic tolerance induced by humate was not accompanied by increased potassium accumulation. Additionally, metabolomic analysis revealed that potassium humate increased maltose levels under control conditions but decreased levels of fructose. However, under stress, both maltose and glucose levels decreased, suggesting changes in starch utilization and an increase in glycolysis. Starch concentration measurements in leaves showed that plants treated with potassium humate accumulated less starch under control conditions, while under stress, they accumulated starch to levels similar to or higher than control plants. Taken together, our findings suggest that the molecular mechanism underlying the abiotic stress tolerance conferred by potassium humate involves its ability to alter starch content under normal growth conditions and under salt or osmotic stress.This research was funded by the CDTI program project EXP 00137666/IDI-20210456. awarded to CALDIC Ibérica S.L. and the research contract. "DESARROLLO DE FORMULADOS BIOESTIMULANTES Y BIOFERTILIZANTES INNOVADORES DE ORIGEN NATURAL (CALBIO) DESTINADOS A LA AGRICULTURA CONVENCIONAL Y ECOLÓGICA. ESTUDIO CIENTÍFICO DE EFECTOS SINÉRGICOS ENTRE BIOACTIVOS MICROBIANOS Y NO MICROBIANOS" Between CALDIC Ibérica S.L. and Universitat Politècnica de València. The APC was funded by the aforementioned research contract.Benito, P.; Bellón, J.; Porcel, R.; Yenush, L.; Mulet, JM. (2023). The Biostimulant, Potassium Humate Ameliorates Abiotic Stress in Arabidopsis thaliana by Increasing Starch Availability. International Journal of Molecular Sciences. 24(15):1-21. https://doi.org/10.3390/ijms241512140121241

    Use of Yucca (Yucca schidigera) Extracts as Biostimulants to Promote Germination and Early Vigor and as Natural Fungicides

    Full text link
    [EN] Climate change is increasing drought and salinity in many cultivated areas, therefore threatening food production. There is a great demand for novel agricultural inputs able to maintain yield under the conditions imposed by the anthropogenic global warming. Biostimulants have been proposed as a useful tool to achieve this objective. We have investigated the biostimulant effect of different yucca (Yucca schidigera) extracts on plant growth at different stages of development under different abiotic stress conditions. The extracts were tested in the model plant Arabidopsis thaliana, and in three different crops; tomato (Solanum lycopersicum var microtom), broccoli (Brassica oleracea var. italica) and lettuce (Lactuca sativa var romana). We have found that the investigated extracts are able to promote germination and early vigor under drought/osmotic and salt stress induced either by sodium chloride or lithium chloride. This effect is particularly strong in Arabidopsis thaliana and in the Brassicaceae broccoli. We have also determined using antibiograms against the model yeast Saccharomyces cerevisiae that the evaluated extracts may be used also as a natural fungicide. The results in this report show that yucca extracts may be used to enhance early vigor in some crops and as a natural fungicide, providing a new and useful tool for farmers.This research was funded by the CDTI program project EXP 00137666/IDI-20210456. awarded to CALDIC Iberica S.L. and the research contract. "DESARROLLO DE FORMULADOS BIOESTIMULANTES Y BIOFERTILIZANTES INNOVADORES DE ORIGEN NATURAL (CALBIO) DESTINADOS A LA AGRICULTURA CONVENCIONAL Y ECOLOGICA. ESTUDIO CIENTIFICO DE EFECTOS SINERGICOS ENTRE BIOACTIVOS MICROBIANOS Y NO MICROBIANOS" Between CALDIC Iberica S.L. and Universitat Politecnica de Valencia. The APC was funded by the afore mentioned research contract.Benito, P.; Ligorio, D.; Bellón, J.; Yenush, L.; Mulet, JM. (2023). Use of Yucca (Yucca schidigera) Extracts as Biostimulants to Promote Germination and Early Vigor and as Natural Fungicides. Plants. 12(2):1-12. https://doi.org/10.3390/plants1202027411212

    A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae

    Full text link
    [EN] The maintenance of ionic homeostasis is essential for cell viability, thus the activity of plasma membrane ion transporters must be tightly controlled. Previous studies in Saccharomyces cerevisiae revealed that the proper trafficking of several nutrient permeases requires the E3 ubiquitin ligase Rsp5 and, in many cases, the presence of specific adaptor proteins needed for Rsp5 substrate recognition. Among these adaptor proteins are nine members of the arrestin-related trafficking adaptor (ART) family. We studied the possible role of the ART family in the regulation of monovalent cation transporters. We show here that the salt sensitivity phenotype of the rim8/art9 mutant is due to severe defects in Ena1 protein accumulation, which is not attributable to transcriptional defects. Many components of the Rim pathway are required for correct Ena1 accumulation, but not for the accumulation of other nutrient permeases. Moreover, we observe that strains lacking components of the endosomal sorting complexes required for transport (ESCRT) pathway previously described to play a role in Rim complex formation present similar defects in Ena1 accumulation. Our results show that, in response to salt stress, a functional Rim complex via specific ESCRT interactions is required for the proper accumulation of the Ena1 protein, but not induction of the ENA1 gene.This work was supported by grants BFU2011-30197-C03-03 from the Spanish Ministry of Science and Innovation (Madrid, Spain) and EUI2009-04147 [Systems Biology of Microorganisms (SysMo2) European Research Area-Network (ERA-NET)]. V. L-T. was supported by a pre-doctoral fellowship from the Polytechnic University of Valencia.Marqués, MC.; Zamarbide-Forés, S.; Pedelini, L.; Llopis Torregrosa, V.; Yenush, L. (2015). A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae. FEMS Yeast Research. 15(4):1-12. https://doi.org/10.1093/femsyr/fov017S112154Abriel, H., Loffing, J., Rebhun, J. F., Pratt, J. H., Schild, L., Horisberger, J.-D., … Staub, O. (1999). Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’s syndrome. Journal of Clinical Investigation, 103(5), 667-673. doi:10.1172/jci5713Alepuz, P. M., Cunningham, K. W., & Estruch, F. (1997). Glucose repression affects ion homeostasis in yeast through the regulation of the stress‐activated ENA1 gene. Molecular Microbiology, 26(1), 91-98. doi:10.1046/j.1365-2958.1997.5531917.xArino, J., Ramos, J., & Sychrova, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09Bagnat, M., Chang, A., & Simons, K. (2001). Plasma Membrane Proton ATPase Pma1p Requires Raft Association for Surface Delivery in Yeast. Molecular Biology of the Cell, 12(12), 4129-4138. doi:10.1091/mbc.12.12.4129Boysen, J. H., & Mitchell, A. P. (2006). Control of Bro1-Domain Protein Rim20 Localization by External pH, ESCRT Machinery, and the Saccharomyces cerevisiae Rim101 Pathway. Molecular Biology of the Cell, 17(3), 1344-1353. doi:10.1091/mbc.e05-10-0949Calcagno-Pizarelli, A. M., Hervas-Aguilar, A., Galindo, A., Abenza, J. F., Penalva, M. A., & Arst, H. N. (2011). Rescue of Aspergillus nidulans severely debilitating null mutations in ESCRT-0, I, II and III genes by inactivation of a salt-tolerance pathway allows examination of ESCRT gene roles in pH signalling. Journal of Cell Science, 124(23), 4064-4076. doi:10.1242/jcs.088344Crespo, J. L., Daicho, K., Ushimaru, T., & Hall, M. N. (2001). The GATA Transcription Factors GLN3 and GAT1 Link TOR to Salt Stress inSaccharomyces cerevisiae. Journal of Biological Chemistry, 276(37), 34441-34444. doi:10.1074/jbc.m103601200Galindo, A., Calcagno-Pizarelli, A. M., Arst, H. N., & Penalva, M. A. (2012). An ordered pathway for the assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane. Journal of Cell Science, 125(7), 1784-1795. doi:10.1242/jcs.098897Garí, E., Piedrafita, L., Aldea, M., & Herrero, E. (1997). A Set of Vectors with a Tetracycline-Regulatable Promoter System for Modulated Gene Expression inSaccharomyces cerevisiae. Yeast, 13(9), 837-848. doi:10.1002/(sici)1097-0061(199707)13:93.0.co;2-tGaxiola, R., de Larrinoa, I. F., Villalba, J. M., & Serrano, R. (1992). A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. The EMBO Journal, 11(9), 3157-3164. doi:10.1002/j.1460-2075.1992.tb05392.xGiaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., … André, B. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418(6896), 387-391. doi:10.1038/nature00935Hayashi, M., Fukuzawa, T., Sorimachi, H., & Maeda, T. (2005). Constitutive Activation of the pH-Responsive Rim101 Pathway in Yeast Mutants Defective in Late Steps of the MVB/ESCRT Pathway. Molecular and Cellular Biology, 25(21), 9478-9490. doi:10.1128/mcb.25.21.9478-9490.2005Herrador, A., Herranz, S., Lara, D., & Vincent, O. (2009). Recruitment of the ESCRT Machinery to a Putative Seven-Transmembrane-Domain Receptor Is Mediated by an Arrestin-Related Protein. Molecular and Cellular Biology, 30(4), 897-907. doi:10.1128/mcb.00132-09Herranz, S., Rodriguez, J. M., Bussink, H.-J., Sanchez-Ferrero, J. C., Arst, H. N., Penalva, M. A., & Vincent, O. (2005). Arrestin-related proteins mediate pH signaling in fungi. Proceedings of the National Academy of Sciences, 102(34), 12141-12146. doi:10.1073/pnas.0504776102Horák, J. (2003). The role of ubiquitin in down-regulation and intracellular sorting of membrane proteins: insights from yeast. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1614(2), 139-155. doi:10.1016/s0005-2736(03)00195-0Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences, 98(8), 4569-4574. doi:10.1073/pnas.061034498Lamb, T. M., & Mitchell, A. P. (2003). The Transcription Factor Rim101p Governs Ion Tolerance and Cell Differentiation by Direct Repression of the Regulatory Genes NRG1 and SMP1 in Saccharomyces cerevisiae. Molecular and Cellular Biology, 23(2), 677-686. doi:10.1128/mcb.23.2.677-686.2003Lamb, T. M., Xu, W., Diamond, A., & Mitchell, A. P. (2000). Alkaline Response Genes ofSaccharomyces cerevisiaeand Their Relationship to theRIM101Pathway. Journal of Biological Chemistry, 276(3), 1850-1856. doi:10.1074/jbc.m008381200Lauwers, E., Erpapazoglou, Z., Haguenauer-Tsapis, R., & André, B. (2010). The ubiquitin code of yeast permease trafficking. Trends in Cell Biology, 20(4), 196-204. doi:10.1016/j.tcb.2010.01.004Léon, S., & Haguenauer-Tsapis, R. (2009). Ubiquitin ligase adaptors: Regulators of ubiquitylation and endocytosis of plasma membrane proteins. Experimental Cell Research, 315(9), 1574-1583. doi:10.1016/j.yexcr.2008.11.014Liu, Y. (2006). Quality control of a mutant plasma membrane ATPase: ubiquitylation prevents cell-surface stability. Journal of Cell Science, 119(2), 360-369. doi:10.1242/jcs.02749Longtine, M. S., Mckenzie III, A., Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., … Pringle, J. R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast, 14(10), 953-961. doi:10.1002/(sici)1097-0061(199807)14:103.0.co;2-uMacGurn, J. A., Hsu, P.-C., & Emr, S. D. (2012). Ubiquitin and Membrane Protein Turnover: From Cradle to Grave. Annual Review of Biochemistry, 81(1), 231-259. doi:10.1146/annurev-biochem-060210-093619Maeda, T. (2012). The signaling mechanism of ambient pH sensing and adaptation in yeast and fungi. FEBS Journal, 279(8), 1407-1413. doi:10.1111/j.1742-4658.2012.08548.xMärquez, J., & Serrano, R. (1996). Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Letters, 382(1-2), 89-92. doi:10.1016/0014-5793(96)00157-3Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328Mulet, J. M., Llopis-Torregrosa, V., Primo, C., Marqués, M. C., & Yenush, L. (2013). Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Current Genetics, 59(4), 207-230. doi:10.1007/s00294-013-0401-2Obara, K., & Kihara, A. (2014). Signaling Events of the Rim101 Pathway Occur at the Plasma Membrane in a Ubiquitination-Dependent Manner. Molecular and Cellular Biology, 34(18), 3525-3534. doi:10.1128/mcb.00408-14Perez-Valle, J., Jenkins, H., Merchan, S., Montiel, V., Ramos, J., Sharma, S., … Yenush, L. (2007). Key Role for Intracellular K+ and Protein Kinases Sat4/Hal4 and Hal5 in the Plasma Membrane Stabilization of Yeast Nutrient Transporters. Molecular and Cellular Biology, 27(16), 5725-5736. doi:10.1128/mcb.01375-06Pérez-Valle, J., Rothe, J., Primo, C., Martínez Pastor, M., Ariño, J., Pascual-Ahuir, A., … Yenush, L. (2010). Hal4 and Hal5 Protein Kinases Are Required for General Control of Carbon and Nitrogen Uptake and Metabolism. Eukaryotic Cell, 9(12), 1881-1890. doi:10.1128/ec.00184-10Platara, M., Ruiz, A., Serrano, R., Palomino, A., Moreno, F., & Ariño, J. (2006). The Transcriptional Response of the Yeast Na+-ATPaseENA1Gene to Alkaline Stress Involves Three Main Signaling Pathways. Journal of Biological Chemistry, 281(48), 36632-36642. doi:10.1074/jbc.m606483200Proft, M., & Serrano, R. (1999). Repressors and Upstream Repressing Sequences of the Stress-RegulatedENA1Gene inSaccharomyces cerevisiae: bZIP Protein Sko1p Confers HOG-Dependent Osmotic Regulation. Molecular and Cellular Biology, 19(1), 537-546. doi:10.1128/mcb.19.1.537Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905Rotin, D., & Staub, O. (2010). Role of the ubiquitin system in regulating ion transport. Pflügers Archiv - European Journal of Physiology, 461(1), 1-21. doi:10.1007/s00424-010-0893-2Ruiz, A., & Ariño, J. (2007). Function and Regulation of theSaccharomyces cerevisiae ENASodium ATPase System. Eukaryotic Cell, 6(12), 2175-2183. doi:10.1128/ec.00337-07Schild, L., Lu, Y., Gautschi, I., Schneeberger, E., Lifton, R. P., & Rossier, B. C. (1996). Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. The EMBO Journal, 15(10), 2381-2387. doi:10.1002/j.1460-2075.1996.tb00594.xSerrano, R., Ruiz, A., Bernal, D., Chambers, J. R., & Ariño, J. (2002). The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Molecular Microbiology, 46(5), 1319-1333. doi:10.1046/j.1365-2958.2002.03246.xStaub, O., Dho, S., Henry, P., Correa, J., Ishikawa, T., McGlade, J., & Rotin, D. (1996). WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. The EMBO Journal, 15(10), 2371-2380. doi:10.1002/j.1460-2075.1996.tb00593.xSubramanian, S., Woolford, C. A., Desai, J. V., Lanni, F., & Mitchell, A. P. (2012). cis - and trans -Acting Localization Determinants of pH Response Regulator Rim13 in Saccharomyces cerevisiae. Eukaryotic Cell, 11(10), 1201-1209. doi:10.1128/ec.00158-12Tréton, B., Blanchin-Roland, S., Lambert, M., Lépingle, A., & Gaillardin, C. (2000). Ambient pH signalling in ascomycetous yeasts involves homologues of the Aspergillus nidulans genes palF and palH. Molecular and General Genetics MGG, 263(3), 505-513. doi:10.1007/s004380051195Vidan, S., & Mitchell, A. P. (1997). Stimulation of yeast meiotic gene expression by the glucose-repressible protein kinase Rim15p. Molecular and Cellular Biology, 17(5), 2688-2697. doi:10.1128/mcb.17.5.2688Wadskog, I., Forsmark, A., Rossi, G., Konopka, C., Öyen, M., Goksör, M., … Adler, L. (2006). The Yeast Tumor Suppressor Homologue Sro7p Is Required for Targeting of the Sodium Pumping ATPase to the Cell Surface. Molecular Biology of the Cell, 17(12), 4988-5003. doi:10.1091/mbc.e05-08-0798Wang, G., Yang, J., & Huibregtse, J. M. (1999). Functional Domains of the Rsp5 Ubiquitin-Protein Ligase. Molecular and Cellular Biology, 19(1), 342-352. doi:10.1128/mcb.19.1.342Xu, W., & Mitchell, A. P. (2001). Yeast PalA/AIP1/Alix Homolog Rim20p Associates with a PEST-Like Region and Is Required for Its Proteolytic Cleavage. Journal of Bacteriology, 183(23), 6917-6923. doi:10.1128/jb.183.23.6917-6923.2001Xu, W., Smith, F. J., Subaran, R., & Mitchell, A. P. (2004). Multivesicular Body-ESCRT Components Function in pH Response Regulation in Saccharomyces cerevisiae and Candida albicans. Molecular Biology of the Cell, 15(12), 5528-5537. doi:10.1091/mbc.e04-08-0666Yang, B., & Kumar, S. (2009). Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death & Differentiation, 17(1), 68-77. doi:10.1038/cdd.2009.84Yoshikawa, K., Tanaka, T., Furusawa, C., Nagahisa, K., Hirasawa, T., & Shimizu, H. (2009). Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress inSaccharomyces cerevisiae. FEMS Yeast Research, 9(1), 32-44. doi:10.1111/j.1567-1364.2008.00456.xZahrádka, J., & Sychrová, H. (2012). Plasma-membrane hyperpolarization diminishes the cation efflux via Nha1 antiporter and Ena ATPase under potassium-limiting conditions. FEMS Yeast Research, 12(4), 439-446. doi:10.1111/j.1567-1364.2012.00793.xZhao, J., Lin, W., Ma, X., Lu, Q., Ma, X., Bian, G., & Jiang, L. (2010). The protein kinase Hal5p is the high-copy suppressor of lithium-sensitive mutations of genes involved in the sporulation and meiosis as well as the ergosterol biosynthesis in Saccharomyces cerevisiae. Genomics, 95(5), 290-298. doi:10.1016/j.ygeno.2010.02.01

    Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters

    Get PDF
    [EN] Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.This work was supported by the Spanish Ministry of Economy and Competitiveness (BIO201677776-P and BIO2016-81957-REDT) and the Valencian Government (AICO/2018/300)Locascio, AAM.; Andrés-Colás, N.; Mulet, JM.; Yenush, L. (2019). Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. International Journal of Molecular Sciences. 20(9):1-37. https://doi.org/10.3390/ijms20092133S137209Schroeder, J. I. (2003). Knockout of the guard cell K+out channel and stomatal movements. Proceedings of the National Academy of Sciences, 100(9), 4976-4977. doi:10.1073/pnas.1031801100Hurst, A. C., Meckel, T., Tayefeh, S., Thiel, G., & Homann, U. (2004). Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. The Plant Journal, 37(3), 391-397. doi:10.1046/j.1365-313x.2003.01972.xBRAG, H. (1972). The Influence of Potassium on the Transpiration Rate and Stomatal Opening in Triticum aestivum andPisum sativum. Physiologia Plantarum, 26(2), 250-257. doi:10.1111/j.1399-3054.1972.tb08553.xMohd Zain, N. A., & Ismail, M. R. (2016). Effects of potassium rates and types on growth, leaf gas exchange and biochemical changes in rice (Oryza sativa) planted under cyclic water stress. Agricultural Water Management, 164, 83-90. doi:10.1016/j.agwat.2015.09.022Hooymans, J. J. M. (1969). The influence of the transpiration rate on uptake and transport of potassium ions in barley plants. Planta, 88(4), 369-371. doi:10.1007/bf00387465Ohnishi, J., Flügge, U.-I., Heldt, H. W., & Kanai, R. (1990). Involvement of Na+ in Active Uptake of Pyruvate in Mesophyll Chloroplasts of Some C4 Plants. Plant Physiology, 94(3), 950-959. doi:10.1104/pp.94.3.950Amtmann, A., & Sanders, D. (1998). Mechanisms of Na+ Uptake by Plant Cells. Advances in Botanical Research, 75-112. doi:10.1016/s0065-2296(08)60310-9Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H.-Y., … Schroeder, J. I. (2007). Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. The EMBO Journal, 26(12), 3003-3014. doi:10.1038/sj.emboj.7601732Wu, H. (2018). Plant salt tolerance and Na+ sensing and transport. The Crop Journal, 6(3), 215-225. doi:10.1016/j.cj.2018.01.003Pyo, Y. J., Gierth, M., Schroeder, J. I., & Cho, M. H. (2010). High-Affinity K+ Transport in Arabidopsis: AtHAK5 and AKT1 Are Vital for Seedling Establishment and Postgermination Growth under Low-Potassium Conditions. Plant Physiology, 153(2), 863-875. doi:10.1104/pp.110.154369Maathuis, F. J., & Sanders, D. (1994). Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 91(20), 9272-9276. doi:10.1073/pnas.91.20.9272Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J., & Gaber, R. F. (1992). Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 89(9), 3736-3740. doi:10.1073/pnas.89.9.3736Gassmann, W., & Schroeder, J. I. (1994). Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control). Plant Physiology, 105(4), 1399-1408. doi:10.1104/pp.105.4.1399Cao, Y., Ward, J. M., Kelly, W. B., Ichida, A. M., Gaber, R. F., Anderson, J. A., … Crawford, N. M. (1995). Multiple Genes, Tissue Specificity, and Expression-Dependent Modulation Contribute to the Functional Diversity of Potassium Channels in Arabidopsis thaliana. Plant Physiology, 109(3), 1093-1106. doi:10.1104/pp.109.3.1093Müller-Röber, B., Ellenberg, J., Provart, N., Willmitzer, L., Busch, H., Becker, D., … Hedrich, R. (1995). Cloning and electrophysiological analysis of KST1, an inward rectifying K+ channel expressed in potato guard cells. The EMBO Journal, 14(11), 2409-2416. doi:10.1002/j.1460-2075.1995.tb07238.xLebaudy, A., Véry, A.-A., & Sentenac, H. (2007). K+channel activity in plants: Genes, regulations and functions. FEBS Letters, 581(12), 2357-2366. doi:10.1016/j.febslet.2007.03.058Véry, A.-A., Nieves-Cordones, M., Daly, M., Khan, I., Fizames, C., & Sentenac, H. (2014). Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species? Journal of Plant Physiology, 171(9), 748-769. doi:10.1016/j.jplph.2014.01.011Schachtman, D., Schroeder, J., Lucas, W., Anderson, J., & Gaber, R. (1992). Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science, 258(5088), 1654-1658. doi:10.1126/science.8966547Gaymard, F., Cerutti, M., Horeau, C., Lemaillet, G., Urbach, S., Ravallec, M., … Thibaud, J.-B. (1996). The Baculovirus/Insect Cell System as an Alternative toXenopusOocytes. Journal of Biological Chemistry, 271(37), 22863-22870. doi:10.1074/jbc.271.37.22863Su, H., Balderas, E., Vera-Estrella, R., Golldack, D., Quigley, F., Zhao, C., … Bohnert, H. J. (2003). Plant Molecular Biology, 52(5), 967-980. doi:10.1023/a:1025445612244Paynter, J. J., Andres-Enguix, I., Fowler, P. W., Tottey, S., Cheng, W., Enkvetchakul, D., … Tucker, S. J. (2010). Functional Complementation and Genetic Deletion Studies of KirBac Channels. Journal of Biological Chemistry, 285(52), 40754-40761. doi:10.1074/jbc.m110.175687Bichet, D., Lin, Y.-F., Ibarra, C. A., Huang, C. S., Yi, B. A., Jan, Y. N., & Jan, L. Y. (2004). Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity. Proceedings of the National Academy of Sciences, 101(13), 4441-4446. doi:10.1073/pnas.0401195101Zaks-Makhina, E., Kim, Y., Aizenman, E., & Levitan, E. S. (2004). Novel Neuroprotective K+ Channel Inhibitor Identified by High-Throughput Screening in Yeast. Molecular Pharmacology, 65(1), 214-219. doi:10.1124/mol.65.1.214Paynter, J. J., Sarkies, P., Andres-Enguix, I., & Tucker, S. J. (2008). Genetic selection of activatory mutations in KcsA. Channels, 2(6), 413-418. doi:10.4161/chan.2.6.6874Yenush, L. (2016). Potassium and Sodium Transport in Yeast. Yeast Membrane Transport, 187-228. doi:10.1007/978-3-319-25304-6_8Gaber, R. F., Styles, C. A., & Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and Cellular Biology, 8(7), 2848-2859. doi:10.1128/mcb.8.7.2848Ko, C. H., & Gaber, R. F. (1991). TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Molecular and Cellular Biology, 11(8), 4266-4273. doi:10.1128/mcb.11.8.4266Durell, S. R., & Guy, H. R. (1999). Structural Models of the KtrB, TrkH, and Trk1,2 Symporters Based on the Structure of the KcsA K+ Channel. Biophysical Journal, 77(2), 789-807. doi:10.1016/s0006-3495(99)76932-8Kuroda, T., Bihler, H., Bashi, E., Slayman, C. L., & Rivetta, A. (2004). Chloride Channel Function in the Yeast TRK-Potassium Transporters. Journal of Membrane Biology, 198(3), 177-192. doi:10.1007/s00232-004-0671-1Zayats, V., Stockner, T., Pandey, S. K., Wörz, K., Ettrich, R., & Ludwig, J. (2015). A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1848(5), 1183-1195. doi:10.1016/j.bbamem.2015.02.007Haro, R., & Rodrı́guez-Navarro, A. (2002). Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1564(1), 114-122. doi:10.1016/s0005-2736(02)00408-xAriño, J., Ramos, J., & Sychrová, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09Ruiz, A., & Ariño, J. (2007). Function and Regulation of the Saccharomyces cerevisiae ENA Sodium ATPase System. Eukaryotic Cell, 6(12), 2175-2183. doi:10.1128/ec.00337-07Haro, R., Garciadeblas, B., & Rodriguez-Navarro, A. (1991). A novel P-type ATPase from yeast involved in sodium transport. FEBS Letters, 291(2), 189-191. doi:10.1016/0014-5793(91)81280-lBenito, B., Garciadeblás, B., & Rodrı́guez-Navarro, A. (2002). Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi The GenBank accession numbers for the sequences reported in this paper are: Pleurotus ostreatus ENA1, AJ420741; Phycomyces blakesleeanus ENA1, AJ420742; Ph. blakesleeanus PCA1, AJ420743; Blakeslea trispora ENA1, AJ420744; B. trispora BCA1, AJ420745; B. trispora BCA2, AJ420746. Microbiology, 148(4), 933-941. doi:10.1099/00221287-148-4-933Palmgren, M. G., & Nissen, P. (2011). P-Type ATPases. Annual Review of Biophysics, 40(1), 243-266. doi:10.1146/annurev.biophys.093008.131331Nakamura, N., Tanaka, S., Teko, Y., Mitsui, K., & Kanazawa, H. (2004). Four Na+/H+Exchanger Isoforms Are Distributed to Golgi and Post-Golgi Compartments and Are Involved in Organelle pH Regulation. Journal of Biological Chemistry, 280(2), 1561-1572. doi:10.1074/jbc.m410041200Ohgaki, R., Nakamura, N., Mitsui, K., & Kanazawa, H. (2005). Characterization of the ion transport activity of the budding yeast Na+/H+ antiporter, Nha1p, using isolated secretory vesicles. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1712(2), 185-196. doi:10.1016/j.bbamem.2005.03.011Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K., & Goldstein, S. A. N. (1995). A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature, 376(6542), 690-695. doi:10.1038/376690a0Maresova, L., Urbankova, E., Gaskova, D., & Sychrova, H. (2006). Measurements of plasma membrane potential changes inSaccharomyces cerevisiaecells reveal the importance of the Tok1 channel in membrane potential maintenance. FEMS Yeast Research, 6(7), 1039-1046. doi:10.1111/j.1567-1364.2006.00140.xAhmed, A., Sesti, F., Ilan, N., Shih, T. M., Sturley, S. L., & Goldstein, S. A. . (1999). A Molecular Target for Viral Killer Toxin. Cell, 99(3), 283-291. doi:10.1016/s0092-8674(00)81659-1Cagnac, O., Leterrier, M., Yeager, M., & Blumwald, E. (2007). Identification and Characterization of Vnx1p, a Novel Type of Vacuolar Monovalent Cation/H+Antiporter ofSaccharomyces cerevisiae. Journal of Biological Chemistry, 282(33), 24284-24293. doi:10.1074/jbc.m703116200Petrezselyova, S., Kinclova-Zimmermannova, O., & Sychrova, H. (2013). Vhc1, a novel transporter belonging to the family of electroneutral cation–Cl− cotransporters, participates in the regulation of cation content and morphology of Saccharomyces cerevisiae vacuoles. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828(2), 623-631. doi:10.1016/j.bbamem.2012.09.019Andre, B., & Scherens, B. (1995). The Yeast YBR235W Gene Encodes a Homolog of the Mammalian Electroneutral Na+-(K+)-Cl− Cotransporter Family. Biochemical and Biophysical Research Communications, 217(1), 150-153. doi:10.1006/bbrc.1995.2757Nass, R., & Rao, R. (1998). Novel Localization of a Na+/H+Exchanger in a Late Endosomal Compartment of Yeast. Journal of Biological Chemistry, 273(33), 21054-21060. doi:10.1074/jbc.273.33.21054Long, S. B. (2005). Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel. Science, 309(5736), 897-903. doi:10.1126/science.1116269Pilot, G., Lacombe, B., Gaymard, F., Chérel, I., Boucherez, J., Thibaud, J.-B., & Sentenac, H. (2000). Guard Cell Inward K+Channel Activity inArabidopsisInvolves Expression of the Twin Channel Subunits KAT1 and KAT2. Journal of Biological Chemistry, 276(5), 3215-3221. doi:10.1074/jbc.m007303200Saito, S., Hoshi, N., Zulkifli, L., Widyastuti, S., Goshima, S., Dreyer, I., & Uozumi, N. (2017). Identification of regions responsible for the function of the plant K+ channels KAT1 and AKT2 in Saccharomyces cerevisiae and Xenopus laevis oocytes. Channels, 11(6), 510-516. doi:10.1080/19336950.2017.1372066Nakamura, R. L., Anderson, J. A., & Gaber, R. F. (1997). Determination of Key Structural Requirements of a K+Channel Pore. Journal of Biological Chemistry, 272(2), 1011-1018. doi:10.1074/jbc.272.2.1011Nakamura, R. L., & Gaber, R. F. (2009). Ion selectivity of the Kat1 K+channel pore. Molecular Membrane Biology, 26(5-7), 293-308. doi:10.1080/09687680903188332Kochian, L. V., Garvin, D. F., Shaff, J. E., Chilcott, T. C., & Lucas, W. J. (1993). Towards an understanding of the molecular basis of plants K+ transport: Characterization of cloned K+ transport cDNAs. Plant and Soil, 155-156(1), 115-118. doi:10.1007/bf00024997Lai, H. C., Grabe, M., Jan, Y. N., & Jan, L. Y. (2005). The S4 Voltage Sensor Packs Against the Pore Domain in the KAT1 Voltage-Gated Potassium Channel. Neuron, 47(3), 395-406. doi:10.1016/j.neuron.2005.06.019Su, Y.-H., North, H., Grignon, C., Thibaud, J.-B., Sentenac, H., & Véry, A.-A. (2005). Regulation by External K+ in a Maize Inward Shaker Channel Targets Transport Activity in the High Concentration Range. The Plant Cell, 17(5), 1532-1548. doi:10.1105/tpc.104.030551Obata, T., Kitamoto, H. K., Nakamura, A., Fukuda, A., & Tanaka, Y. (2007). Rice Shaker Potassium Channel OsKAT1 Confers Tolerance to Salinity Stress on Yeast and Rice Cells. Plant Physiology, 144(4), 1978-1985. doi:10.1104/pp.107.101154Hirsch, R. E. (1998). A Role for the AKT1 Potassium Channel in Plant Nutrition. Science, 280(5365), 918-921. doi:10.1126/science.280.5365.918Ahn, S. J., Shin, R., & Schachtman, D. P. (2004). Expression of KT/KUP Genes in Arabidopsis and the Role of Root Hairs in K+ Uptake. Plant Physiology, 134(3), 1135-1145. doi:10.1104/pp.103.034660Gierth, M., Mäser, P., & Schroeder, J. I. (2005). The Potassium Transporter AtHAK5 Functions in K+ Deprivation-Induced High-Affinity K+ Uptake and AKT1 K+ Channel Contribution to K+ Uptake Kinetics in Arabidopsis Roots. Plant Physiology, 137(3), 1105-1114. doi:10.1104/pp.104.057216Ros, R., Lemaillet, G., Fonrouge, A. G., Daram, P., Enjuto, M., Salmon, J. M., … Sentenac, H. (1999). Molecular determinants of the Arabidopsis AKT1 K+ channel ionic selectivity investigated by expression in yeast of randomly mutated channels. Physiologia Plantarum, 105(3), 459-468. doi:10.1034/j.1399-3054.1999.105310.xHartje, S., Zimmermann, S., Klonus, D., & Mueller-Roeber, B. (2000). Functional characterisation of LKT1, a K + uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K + channel SKT1 after expression in Xenopus oocytes. Planta, 210(5), 723-731. doi:10.1007/s004250050673BOSCARI, A., CLÉMENT, M., VOLKOV, V., GOLLDACK, D., HYBIAK, J., MILLER, A. J., … FRICKE, W. (2009). Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant, Cell & Environment, 32(12), 1761-1777. doi:10.1111/j.1365-3040.2009.02033.xSchleyer, M., & Bakker, E. P. (1993). Nucleotide sequence and 3’-end deletion studies indicate that the K(+)-uptake protein kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. Journal of Bacteriology, 175(21), 6925-6931. doi:10.1128/jb.175.21.6925-6931.1993Bañuelos, M. A., Klein, R. D., Alexander-Bowman, S. J., & Rodríguez-Navarro, A. (1995). A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. The EMBO Journal, 14(13), 3021-3027. doi:10.1002/j.1460-2075.1995.tb07304.xSanta-María, G. E., Rubio, F., Dubcovsky, J., & Rodríguez-Navarro, A. (1997). The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. The Plant Cell, 9(12), 2281-2289. doi:10.1105/tpc.9.12.2281Nieves-Cordones, M., Alemán, F., Martínez, V., & Rubio, F. (2010). The Arabidopsis thaliana HAK5 K+ Transporter Is Required for Plant Growth and K+ Acquisition from Low K+ Solutions under Saline Conditions. Molecular Plant, 3(2), 326-333. doi:10.1093/mp/ssp102Rubio, F., Santa-María, G. E., & Rodríguez-Navarro, A. (2000). Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiologia Plantarum, 109(1), 34-43. doi:10.1034/j.1399-3054.2000.100106.xRubio, F., Gassmann, W., & Schroeder, J. I. (1995). Sodium-Driven Potassium Uptake by the Plant Potassium Transporter HKT1 and Mutations Conferring Salt Tolerance. Science, 270(5242), 1660-1663. doi:10.1126/science.270.5242.1660Gassmann, W., Rubio, F., & Schroeder, J. I. (1996). Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. The Plant Journal, 10(5), 869-882. doi:10.1046/j.1365-313x.1996.10050869.xUozumi, N., Kim, E. J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., … Schroeder, J. I. (2000). The Arabidopsis HKT1 Gene Homolog Mediates Inward Na+ Currents in Xenopus laevis Oocytes and Na+ Uptake in Saccharomyces cerevisiae. Plant Physiology, 122(4), 1249-1260. doi:10.1104/pp.122.4.1249Rubio, F., Schwarz, M., Gassmann, W., & Schroeder, J. I. (1999). Genetic Selection of Mutations in the High Affinity K+Transporter HKT1 That Define Functions of a Loop Site for Reduced Na+Permeability and Increased Na+Tolerance. Journal of Biological Chemistry, 274(11), 6839-6847. doi:10.1074/jbc.274.11.6839Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., … Uozumi, N. (2005). Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal, 44(6), 928-938. doi:10.1111/j.1365-313x.2005.02595.xFairbairn, D. J., Liu, W., Schachtman, D. P., Gomez-Gallego, S., Day, S. R., & Teasdale, R. D. (2000). Plant Molecular Biology, 43(4), 515-525. doi:10.1023/a:1006496402463Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., & Shinmyo, A. (2001). Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. The Plant Journal, 27(2), 129-138. doi:10.1046/j.1365-313x.2001.01077.xWang, T.-B., Gassmann, W., Rubio, F., Schroeder, J. I., & Glass, A. D. M. (1998). Rapid Up-Regulation of HKT1, a High-Affinity Potassium Transporter Gene, in Roots of Barley and Wheat following Withdrawal of Potassium. Plant Physiology, 118(2), 651-659. doi:10.1104/pp.118.2.651Safiarian, M. J., Pertl-Obermeyer, H., Lughofer, P., Hude, R., Bertl, A., & Obermeyer, G. (2015). Lost in traffic? The K+ channel of lily pollen, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00047Mouline, K. (2002). Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes & Development, 16(3), 339-350. doi:10.1101/gad.213902Bihler, H., Eing, C., Hebeisen, S., Roller, A., Czempinski, K., & Bertl, A. (2005). TPK1 Is a Vacuolar Ion Channel Different from the Slow-Vacuolar Cation Channel. Plant Physiology, 139(1), 417-424. doi:10.1104/pp.105.065599Hamamoto, S., Marui, J., Matsuoka, K., Higashi, K., Igarashi, K., Nakagawa, T., … Uozumi, N. (2007). Characterization of a Tobacco TPK-type K+Channel as a Novel Tonoplast K+Channel Using Yeast Tonoplasts. Journal of Biological Chemistry, 283(4), 1911-1920. doi:10.1074/jbc.m708213200Goldstein, S. A. N., Bockenhauer, D., O’Kelly, I., & Zilberberg, N. (2001). Potassium leak channels and the KCNK family of two-p-domain subunits. Nature Reviews Neuroscience, 2(3), 175-184. doi:10.1038/35058574Becker, D., Geiger, D., Dunkel, M., Roller, A., Bertl, A., Latz, A., … Hedrich, R. (2004). AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proceedings of the National Academy of Sciences, 101(44), 15621-15626. doi:10.1073/pnas.0401502101Apse, M. P. (1999). Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis. Science, 285(5431), 1256-1258. doi:10.1126/science.285.5431.1256Gaxiola, R. A., Rao, R., Sherman, A., Grisafi, P., Alper, S. L., & Fink, G. R. (1999). The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proceedings of the National Academy of Sciences, 96(4), 1480-1485. doi:10.1073/pnas.96.4.1480Bassil, E., Tajima, H., Liang, Y.-C., Ohto, M., Ushijima, K., Nakano, R., … Blumwald, E. (2011). The Arabidopsis Na+/H+ Antiporters

    Regulation of the Yeast Hxt6 Hexose Transporter by the Rod1 α-Arrestin, the Snf1 Protein Kinase, and the Bmh2 14-3-3 Protein

    Get PDF
    [EN] Cell viability requires adaptation to changing environmental conditions. Ubiquitin-mediated endocytosis plays a crucial role in this process, because it provides a mechanism to remove transport proteins from the membrane. Arrestin-related trafficking proteins are important regulators of the endocytic pathway in yeast, facilitating selective ubiquitylation of target proteins by the E3 ubiquitin ligase, Rsp5. Specifically, Rod1 (Art4) has been reported to regulate the endocytosis of both the Hxt1, Hxt3, and Hxt6 glucose transporters and the Jen1 lactate transporter. Also, the AMP kinase homologue, Snf1, and 14-3-3 proteins have been shown to regulate Jen1 via Rod1. Here, we further characterized the role of Rod1, Snf1, and 14-3-3 in the signal transduction route involved in the endocytic regulation of the Hxt6 high affinity glucose transporter by showing that Snf1 interacts specifically with Rod1 and Rog3 (Art7), that the interaction between the Bmh2 and several arrestin-related trafficking proteins may be modulated by carbon source, and that both the 14-3-3 protein Bmh2 and the Snf1 regulatory domain interact with the arrestin-like domain containing the N-terminal half of Rod1 (amino acids 1-395). Finally, using both co-immunoprecipitation and bimolecular fluorescence complementation, we demonstrated the interaction of Rod1 with Hxt6 and showed that the localization of the Rod1-Hxt6 complex at the plasma membrane is affected by carbon source and is reduced upon overexpression of SNF1 and BMH2.Supported by a predoctoral fellowship from the Polytechnic University of Valencia.Llopis Torregrosa, V.; Ferri-Blazquez, A.; Adam-Artigues, A.; Deffontaines, E.; Van Heusden, GPH.; Yenush, L. (2016). Regulation of the Yeast Hxt6 Hexose Transporter by the Rod1 α-Arrestin, the Snf1 Protein Kinase, and the Bmh2 14-3-3 Protein. Journal of Biological Chemistry. 291(29):14973-14985. https://doi.org/10.1074/jbc.M116.733923S149731498529129Mulet, J. M., Llopis-Torregrosa, V., Primo, C., Marqués, M. C., & Yenush, L. (2013). Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Current Genetics, 59(4), 207-230. doi:10.1007/s00294-013-0401-2Hein, C., Springael, J.-Y., Volland, C., Haguenauer-Tsapis, R., & Andre, B. (1995). NPI1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Molecular Microbiology, 18(1), 77-87. doi:10.1111/j.1365-2958.1995.mmi_18010077.xBabst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T., & Emr, S. D. (2002). Escrt-III. Developmental Cell, 3(2), 271-282. doi:10.1016/s1534-5807(02)00220-4Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B., & Emr, S. D. (2002). Endosome-Associated Complex, ESCRT-II, Recruits Transport Machinery for Protein Sorting at the Multivesicular Body. Developmental Cell, 3(2), 283-289. doi:10.1016/s1534-5807(02)00219-8Katzmann, D. J., Babst, M., & Emr, S. D. (2001). Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I. Cell, 106(2), 145-155. doi:10.1016/s0092-8674(01)00434-2Lauwers, E., Erpapazoglou, Z., Haguenauer-Tsapis, R., & André, B. (2010). The ubiquitin code of yeast permease trafficking. Trends in Cell Biology, 20(4), 196-204. doi:10.1016/j.tcb.2010.01.004Lin, C. H., MacGurn, J. A., Chu, T., Stefan, C. J., & Emr, S. D. (2008). Arrestin-Related Ubiquitin-Ligase Adaptors Regulate Endocytosis and Protein Turnover at the Cell Surface. Cell, 135(4), 714-725. doi:10.1016/j.cell.2008.09.025Aubry, L., & Klein, G. (2013). True Arrestins and Arrestin-Fold Proteins. The Molecular Biology of Arrestins, 21-56. doi:10.1016/b978-0-12-394440-5.00002-4Hatakeyama, R., Kamiya, M., Takahara, T., & Maeda, T. (2010). Endocytosis of the Aspartic Acid/Glutamic Acid Transporter Dip5 Is Triggered by Substrate-Dependent Recruitment of the Rsp5 Ubiquitin Ligase via the Arrestin-Like Protein Aly2. Molecular and Cellular Biology, 30(24), 5598-5607. doi:10.1128/mcb.00464-10Nikko, E., Sullivan, J. A., & Pelham, H. R. B. (2008). Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smf1. EMBO reports, 9(12), 1216-1221. doi:10.1038/embor.2008.199Nikko, E., & Pelham, H. R. B. (2009). Arrestin-Mediated Endocytosis of Yeast Plasma Membrane Transporters. Traffic, 10(12), 1856-1867. doi:10.1111/j.1600-0854.2009.00990.xMacGurn, J. A., Hsu, P.-C., Smolka, M. B., & Emr, S. D. (2011). TORC1 Regulates Endocytosis via Npr1-Mediated Phosphoinhibition of a Ubiquitin Ligase Adaptor. Cell, 147(5), 1104-1117. doi:10.1016/j.cell.2011.09.054Merhi, A., & Andre, B. (2012). Internal Amino Acids Promote Gap1 Permease Ubiquitylation via TORC1/Npr1/14-3-3-Dependent Control of the Bul Arrestin-Like Adaptors. Molecular and Cellular Biology, 32(22), 4510-4522. doi:10.1128/mcb.00463-12O’Donnell, A. F., Huang, L., Thorner, J., & Cyert, M. S. (2013). A Calcineurin-dependent Switch Controls the Trafficking Function of α-Arrestin Aly1/Art6. Journal of Biological Chemistry, 288(33), 24063-24080. doi:10.1074/jbc.m113.478511O’Donnell, A. F., McCartney, R. R., Chandrashekarappa, D. G., Zhang, B. B., Thorner, J., & Schmidt, M. C. (2014). 2-Deoxyglucose Impairs Saccharomyces cerevisiae Growth by Stimulating Snf1-Regulated and α-Arrestin-Mediated Trafficking of Hexose Transporters 1 and 3. Molecular and Cellular Biology, 35(6), 939-955. doi:10.1128/mcb.01183-14Becuwe, M., Vieira, N., Lara, D., Gomes-Rezende, J., Soares-Cunha, C., Casal, M., … Léon, S. (2012). A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. The Journal of Cell Biology, 196(2), 247-259. doi:10.1083/jcb.201109113Alvaro, C. G., Aindow, A., & Thorner, J. (2016). Differential Phosphorylation Provides a Switch to Control How α-Arrestin Rod1 Down-regulates Mating Pheromone Response inSaccharomyces cerevisiae. Genetics, 203(1), 299-317. doi:10.1534/genetics.115.186122Alvaro, C. G., O’Donnell, A. F., Prosser, D. C., Augustine, A. A., Goldman, A., Brodsky, J. L., … Thorner, J. (2014). Specific  -Arrestins Negatively Regulate Saccharomyces cerevisiae Pheromone Response by Down-Modulating the G-Protein-Coupled Receptor Ste2. Molecular and Cellular Biology, 34(14), 2660-2681. doi:10.1128/mcb.00230-14Shinoda, J., & Kikuchi, Y. (2007). Rod1, an arrestin-related protein, is phosphorylated by Snf1-kinase in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 364(2), 258-263. doi:10.1016/j.bbrc.2007.09.134Ichimura, T., Yamamura, H., Sasamoto, K., Tominaga, Y., Taoka, M., Kakiuchi, K., … Isobe, T. (2005). 14-3-3 Proteins Modulate the Expression of Epithelial Na+Channels by Phosphorylation-dependent Interaction with Nedd4-2 Ubiquitin Ligase. Journal of Biological Chemistry, 280(13), 13187-13194. doi:10.1074/jbc.m412884200Bhalla, V., Daidié, D., Li, H., Pao, A. C., LaGrange, L. P., Wang, J., … Pearce, D. (2005). Serum- and Glucocorticoid-Regulated Kinase 1 Regulates Ubiquitin Ligase Neural Precursor Cell-Expressed, Developmentally Down-Regulated Protein 4-2 by Inducing Interaction with 14-3-3. Molecular Endocrinology, 19(12), 3073-3084. doi:10.1210/me.2005-0193Jiang, R., & Carlson, M. (1996). Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes & Development, 10(24), 3105-3115. doi:10.1101/gad.10.24.3105Proszynski, T. J., Klemm, R. W., Gravert, M., Hsu, P. P., Gloor, Y., Wagner, J., … Walch-Solimena, C. (2005). A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proceedings of the National Academy of Sciences, 102(50), 17981-17986. doi:10.1073/pnas.0509107102MacGurn, J. A., Hsu, P.-C., & Emr, S. D. (2012). Ubiquitin and Membrane Protein Turnover: From Cradle to Grave. Annual Review of Biochemistry, 81(1), 231-259. doi:10.1146/annurev-biochem-060210-093619Becuwe, M. , and Léon, S. (2014) Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5. Elife 3, 03307Alvarez, C. E. (2008). On the origins of arrestin and rhodopsin. BMC Evolutionary Biology, 8(1), 222. doi:10.1186/1471-2148-8-222Chutkow, W. A., Patwari, P., Yoshioka, J., & Lee, R. T. (2007). Thioredoxin-interacting Protein (Txnip) Is a Critical Regulator of Hepatic Glucose Production. Journal of Biological Chemistry, 283(4), 2397-2406. doi:10.1074/jbc.m708169200Sheth, S. S., Castellani, L. W., Chari, S., Wagg, C., Thipphavong, C. K., Bodnar, J. S., … Lusis, A. J. (2004). Thioredoxin-interacting protein deficiency disrupts the fasting-feeding metabolic transition. Journal of Lipid Research, 46(1), 123-134. doi:10.1194/jlr.m400341-jlr200Bodnar, J. S., Chatterjee, A., Castellani, L. W., Ross, D. A., Ohmen, J., Cavalcoli, J., … Lusis, A. J. (2001). Positional cloning of the combined hyperlipidemia gene Hyplip1. Nature Genetics, 30(1), 110-116. doi:10.1038/ng811Parikh, H., Carlsson, E., Chutkow, W. A., Johansson, L. E., Storgaard, H., Poulsen, P., … Mootha, V. K. (2007). TXNIP Regulates Peripheral Glucose Metabolism in Humans. PLoS Medicine, 4(5), e158. doi:10.1371/journal.pmed.0040158Yoshioka, J., Imahashi, K., Gabel, S. A., Chutkow, W. A., Burds, A. A., Gannon, J., … Lee, R. T. (2007). Targeted Deletion of Thioredoxin-Interacting Protein Regulates Cardiac Dysfunction in Response to Pressure Overload. Circulation Research, 101(12), 1328-1338. doi:10.1161/circresaha.106.160515Andres, A. M., Ratliff, E. P., Sachithanantham, S., & Hui, S. T. (2011). Diminished AMPK signaling response to fasting in thioredoxin-interacting protein knockout mice. FEBS Letters, 585(8), 1223-1230. doi:10.1016/j.febslet.2011.03.042Wu, N., Zheng, B., Shaywitz, A., Dagon, Y., Tower, C., Bellinger, G., … Cantley, L. C. (2013). AMPK-Dependent Degradation of TXNIP upon Energy Stress Leads to Enhanced Glucose Uptake via GLUT1. Molecular Cell, 49(6), 1167-1175. doi:10.1016/j.molcel.2013.01.035Patwari, P., Chutkow, W. A., Cummings, K., Verstraeten, V. L. R. M., Lammerding, J., Schreiter, E. R., & Lee, R. T. (2009). Thioredoxin-independent Regulation of Metabolism by the α-Arrestin Proteins. Journal of Biological Chemistry, 284(37), 24996-25003. doi:10.1074/jbc.m109.018093Paumi, C. M., Menendez, J., Arnoldo, A., Engels, K., Iyer, K. R., Thaminy, S., … Stagljar, I. (2007). Mapping Protein-Protein Interactions for the Yeast ABC Transporter Ycf1p by Integrated Split-Ubiquitin Membrane Yeast Two-Hybrid Analysis. Molecular Cell, 26(1), 15-25. doi:10.1016/j.molcel.2007.03.011Zonneveld, B. J. M. (1986). Cheap and simple yeast media. Journal of Microbiological Methods, 4(5-6), 287-291. doi:10.1016/0167-7012(86)90040-0Mayordomo, I., Regelmann, J., Horak, J., & Sanz, P. (2003). Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 participate in the process of catabolite inactivation of maltose permease. FEBS Letters, 544(1-3), 160-164. doi:10.1016/s0014-5793(03)00498-8Zahrádka, J., van Heusden, G. P. H., & Sychrová, H. (2012). Yeast 14-3-3 proteins participate in the regulation of cell cation homeostasis via interaction with Nha1 alkali-metal-cation/proton antiporter. Biochimica et Biophysica Acta (BBA) - General Subjects, 1820(7), 849-858. doi:10.1016/j.bbagen.2012.03.013Sung, M.-K., & Huh, W.-K. (2007). Bimolecular fluorescence complementation analysis system forin vivo detection of protein–protein interaction inSaccharomyces cerevisiae. Yeast, 24(9), 767-775. doi:10.1002/yea.1504Longtine, M. S., Mckenzie III, A., Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., … Pringle, J. R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast, 14(10), 953-961. doi:10.1002/(sici)1097-0061(199807)14:103.0.co;2-uBurd, C. G., & Emr, S. D. (1998). Phosphatidylinositol(3)-Phosphate Signaling Mediated by Specific Binding to RING FYVE Domains. Molecular Cell, 2(1), 157-162. doi:10.1016/s1097-2765(00)80125-2Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005Gaxiola, R., de Larrinoa, I. F., Villalba, J. M., & Serrano, R. (1992). A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. The EMBO Journal, 11(9), 3157-3164. doi:10.1002/j.1460-2075.1992.tb05392.

    Yeast Saccharomyces cerevisiae adiponectin receptor homolog Izh2 is involved in the regulation of zinc, phospholipid and pH homeostasis

    Full text link
    [EN] The functional link between zinc homeostasis and membrane-related processes, including lipid metabolism regulation, extends from yeast to humans, and has a likely role in the pathogenesis of diabetes. The yeast Izh2 protein has been previously implicated in zinc ion homeostasis and in the regulation of lipid and phosphate metabolism, but its precise molecular function is not known. We performed a chemogenomics experiment to determine the genes conferring resistance or sensitivity to different environmental zinc concentrations. We then determined at normal, depleted and excess zinc concentrations, the genetic interactions of IZH2 at the genome-wide level and measured changes in the transcriptome caused by deletion of IZH2. We found evidence for an important cellular function of the Rim101 pathway in zinc homeostasis in neutral or acidic environments, and observed that phosphatidylinositol is a source of inositol when zinc availability is limited. Comparison of our experimental profiles with published gene expression and genetic interaction profiles revealed pleiotropic functions for Izh2. We propose that Izh2 acts as an integrator of intra- and extracellular signals in providing adequate cellular responses to maintain homeostasis under different external conditions, including but not limited to alterations in zinc concentrations. Guardar / Salir Siguiente >This work was supported by grant P1-0207 from the Slovenian Research Agency. M.M.U. was supported by the Young Investigator fellowship scheme from the Slovenian Research Agency. Work done in the group of L.Y. was funded by grant BFU2011-30197-C03-03 from the Spanish Ministry of Science and Innovation (Madrid, Spain). C.P. was supported by a pre-doctoral fellowship from the Spanish Research Council.Mattiazzi Usaj, M.; Prelec, M.; Brioznic, M.; Primo Planta, C.; Curk, T.; Scancar, J.; Yenush, L.... (2015). Yeast Saccharomyces cerevisiae adiponectin receptor homolog Izh2 is involved in the regulation of zinc, phospholipid and pH homeostasis. Metallomics. 7(9):1338-1351. https://doi.org/10.1039/c5mt00095e133813517

    Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica)

    Get PDF
    [EN] Background Salt stress is one of the main constraints determining crop productivity, and therefore one of the main limitations for food production. The aim of this study was to characterize the salt stress response at the physiological and molecular level of different Broccoli (Brassica oleracea L. var. Italica Plenck) cultivars that were previously characterized in field and greenhouse trials as salt sensitive or salt tolerant. This study aimed to identify functional and molecular traits capable of predicting the ability of uncharacterized lines to cope with salt stress. For this purpose, this study measured different physiological parameters, hormones and metabolites under control and salt stress conditions. Results This study found significant differences among cultivars for stomatal conductance, transpiration, methionine, proline, threonine, abscisic acid, jasmonic acid and indolacetic acid. Salt tolerant cultivars were shown to accumulate less sodium and potassium in leaves and have a lower sodium to potassium ratio under salt stress. Analysis of primary metabolites indicated that salt tolerant cultivars have higher concentrations of several intermediates of the Krebs cycle and the substrates of some anaplerotic reactions. Conclusions This study has found that the energetic status of the plant, the sodium extrusion and the proline content are the limiting factors for broccoli tolerance to salt stress. Our results establish physiological and molecular traits useful as distinctive markers to predict salt tolerance in Broccoli or to design novel biotechnological or breeding strategies for improving broccoli tolerance to salt stress.This work was funded by Grant RTC-2017-6468-2-AR (APROXIMACIONES MOLECULARES PARA INCREMENTAR LA TOLERANCIA A SALINIDAD Y SEQUiA DEL BROCOLI) funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" by the European Union. S.C. is a recipient of grant FPU19/01977 from the Spanish Ministerio de Universidades. L.M. was supported by the Spanish MICINN (PTA2019-018094). L.M and A.V. activities were founded by Prometeu program (IMAGINA project, PROMETEU/2019/110). CEAM foundation is funded by Generalitat Valenciana. None of the funding bodies has participated in the design of the study or the collection, analysis, interpretation of data, nor in writing the manuscript.Chevilly-Tena, S.; Dolz-Edo, L.; Morcillo, L.; Vilagrosa, A.; López-Nicolás, JM.; Yenush, L.; Mulet, JM. (2021). Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica). BMC Plant Biology. 21(1):1-16. https://doi.org/10.1186/s12870-021-03263-4S11621

    Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus

    Full text link
    [EN] Tomato plants expressing the NahG transgene, which prevents accumulation of endogenous salicylic acid (SA), were used to study the importance of the SA signalling pathway in basal defence against Citrus Exocortis Viroid (CEVd) or Tomato Spotted Wilt Virus (TSWV). The lack of SA accumulation in the CEVd- or TSWV-infected NahG tomato plants led to an early and dramatic disease phenotype, as compared to that observed in the corresponding parental Money Maker. Addition of acibenzolar-S-methyl, a benzothiadiazole (BTH), which activates the systemic acquired resistance pathway downstream of SA signalling, improves resistance of NahG tomato plants to CEVd and TSWV. CEVd and TSWV inoculation induced the accumulation of the hydroxycinnamic amides p-coumaroyltyramine, feruloyltyramine, caffeoylputrescine, and feruloylputrescine, and the defence related proteins PR1 and P23 in NahG plants earlier and with more intensity than in Money Maker plants, indicating that SA is not essential for the induction of these plant defence metabolites and proteins. In addition, NahG plants produced very high levels of ethylene upon CEVd or TSWV infection when compared with infected Money Maker plants, indicating that the absence of SA produced additional effects on other metabolic pathways. This is the first report to show that SA is an important component of basal resistance of tomato plants to both CEVd and TSWV, indicating that SA-dependent defence mechanisms play a key role in limiting the severity of symptoms in CEVd- and TSWV-infected NahG tomato plants.This work was supported by grant BIO2012-33419 from the Spanish Ministry of Economy and Competitiveness received by JMB. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.López-Gresa, MP.; Lisón, P.; Yenush, L.; Conejero Tomás, V.; Rodrigo Bravo, I.; Belles Albert, JM. (2016). Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLoS ONE. 11(11). https://doi.org/10.1371/journal.pone.0166938S111

    FungalBraid 2.0: expanding the synthetic biology toolbox for the biotechnological exploitation of filamentous fungi

    Full text link
    [EN] Fungal synthetic biology is a rapidly expanding field that aims to optimize the biotechnological exploitation of fungi through the generation of standard, readyto-use genetic elements, and universal syntax and rules for contributory use by the fungal research community. Recently, an increasing number of synthetic biology toolkits have been developed and applied to filamentous fungi, which highlights the relevance of these organisms in the biotechnology field. The FungalBraid (FB) modular cloning platform enables interchangeability of DNA parts with the GoldenBraid (GB) platform, which is designed for plants, and other systems that are compatible with the standard Golden Gate cloning and syntax, and uses binary pCAMBIA-derived vectors to allow Agrobacterium tumefaciensmediated transformation of a wide range of fungal species. In this study, we have expanded the original FB catalog by adding 27 new DNA parts that were functionally validated in vivo. Among these are the resistance selection markers for the antibiotics phleomycin and terbinafine, as well as the uridine-auxotrophic marker pyr4. We also used a normalized luciferase reporter system to validate several promoters, such as PpkiA,P7760,Pef1¿, and PafpB constitutive promoters, and PglaA,PamyB, and PxlnA inducible promoters. Additionally, the recently developed dCas9-regulated GB_SynP synthetic promoter collection for orthogonal CRISPR activation (CRISPRa) in plants has been adapted in fungi through the FB system. In general, the expansion of the FB catalog is of great interest to the scientific community since it increases the number of possible modular and interchangeable DNA assemblies, exponentially increasing the possibilities of studying, developing, and exploiting filamentous fungi.This work was supported by PROMETEO/2018/066 from "Conselleria d'Educacio" (Generalitat Valenciana, Comunitat Valenciana, Spain), grant PID2021-125858OB-100, and the Severo Ochoa Excellence Program CEX 2021-001189-S funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe." EM-G was the recipient of a predoctoral grant FPU18/02019 funded by MCIN/AEI/10.13039/501100011033 and by "ESF Investing in your future." SG holds a Juan de la Cierva Incorporacion grant (IJC 2020-042749-I) funded by MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR.Moreno-Giménez, E.; Gandía, M.; Sáez, Z.; Manzanares, P.; Yenush, L.; Orzáez Calatayud, DV.; Marcos, JF.... (2023). FungalBraid 2.0: expanding the synthetic biology toolbox for the biotechnological exploitation of filamentous fungi. Frontiers in Bioengineering and Biotechnology. 11:1-17. https://doi.org/10.3389/fbioe.2023.12228121171
    corecore