10,280 research outputs found

    Correlation of the orbach relaxation coefficient with optical linewidths- laf3-er3 plus

    Get PDF
    Correlation of Orbach coefficient of spin-lattice relaxation with optical transition linewidths for trivalent erbium in lanthanum fluorid

    Towards effective Web site designs: A framework for modeling, design evaluation and enhancement

    Get PDF
    Effective Web site design is critical to the success of e-commerce. Therefore, the evaluation and enhancement of a Web site design is of great importance. In this vein, accessibility is important and has been examined by a lot of researchers from different points of views. By and large, Web site accessibility is a structural problem and may be analytically investigated using mathematical approach. We propose a framework for representing real-world design problems as generic Web site designs, which then can be mapped into accessibility models analyzable or solvable using established analytical techniques. The framework consists of generic design and graph models, with the necessary mapping. We describe a generic Web site design using its objective and constraints, which correspond to important design requirements. By representing design problems using well-defined structures and rigorous analysis methods, this framework measures Web site accessibility using systematic and quantifiable approaches rather than qualitative ad-hoc practice. Hence, the framework facilitates the overall Web site design process, enhances design quality, and increases ease of analysis, implementation and continuous improvement. © 2005 IEEE.published_or_final_versio

    Analysis of Clumps in Molecular Cloud Models: Mass Spectrum, Shapes, Alignment and Rotation

    Full text link
    Observations reveal concentrations of molecular line emission on the sky, called ``clumps,'' in dense, star-forming molecular clouds. These clumps are believed to be the eventual sites of star formation. We study the three-dimensional analogs of clumps using a set of self-consistent, time-dependent numerical models of molecular clouds. The models follow the decay of initially supersonic turbulence in an isothermal, self-gravitating, magnetized fluid. We find the following. (1) Clumps are intrinsically triaxial. This explains the observed deficit of clumps with a projected axis ratio near unity, and the apparent prolateness of clumps. (2) Simulated clump axes are not strongly aligned with the mean magnetic field within clumps, nor with the large-scale mean fields. This is in agreement with observations. (3) The clump mass spectrum has a high-mass slope that is consistent with the Salpeter value. There is a low-mass break in the slope at \sim 0.5 \msun, although this may depend on model parameters including numerical resolution. (4) The typical specific spin angular momentum of clumps is 4×1022cm2s−14 \times 10^{22} {\rm cm^2 s^{-1}}. This is larger than the median specific angular momentum of binary stars. Scaling arguments suggest that higher resolution simulations may soon be able to resolve the scales at which the angular momentum of binary stars is determined.Comment: 14 pages, 13 figures, to appear in 2003 July 20 Ap

    Artifacts with uneven sampling of red noise

    Get PDF
    The vast majority of sampling systems operate in a standard way: at each tick of a fixed-frequency master clock a digitizer reads out a voltage that corresponds to the value of some physical quantity and translates it into a bit pattern that is either transmitted, stored, or processed right away. Thus signal sampling at evenly spaced time intervals is the rule: however this is not always the case, and uneven sampling is sometimes unavoidable. While periodic or quasi-periodic uneven sampling of a deterministic signal can reasonably be expected to produce artifacts, it is much less obvious that the same happens with noise: here I show that this is indeed the case only for long-memory noise processes, i.e., power-law noises 1/fα1/f^\alpha with α>2\alpha > 2. The resulting artifacts are usually a nuisance although they can be eliminated with a proper processing of the signal samples, but they could also be turned to advantage and used to encode information.Comment: 5 figure

    The Harmonic Measure for critical Potts clusters

    Full text link
    We present a technique, which we call "etching," which we use to study the harmonic measure of Fortuin-Kasteleyn clusters in the Q-state Potts model for Q=1-4. The harmonic measure is the probability distribution of random walkers diffusing onto the perimeter of a cluster. We use etching to study regions of clusters which are extremely unlikely to be hit by random walkers, having hitting probabilities down to 10^(-4600). We find good agreement between the theoretical predictions of Duplantier and our numerical results for the generalized dimension D(q), including regions of small and negative q.Comment: 20 pages, 10 figure

    Ultraviolet Diversity of Type Ia Supernovae

    Get PDF
    Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 A. We focus on spectra taken within 5 days of maximum brightness. Our sample of ten SNe Ia spans the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 A (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.Comment: 9 pages, 6 figures, submitted to MNRA

    Resolving the Antibaryon-Production Puzzle in High-Energy Heavy-Ion Collisions

    Get PDF
    We argue that the observed antiproton production in heavy-ion collisions at CERN-SpS energies can be understood if (contrary to most sequential scattering approaches) the backward direction in the process ppˉ↔nˉπp\bar p \leftrightarrow \bar{n}\pi (with nˉ\bar{n}=5-6) is consistently accounted for within a thermal framework. Employing the standard picture of subsequent chemical and thermal freezeout, which induces an over-saturation of pion number with associated chemical potentials of Όπ≃\mu_\pi\simeq~60-80 MeV, enhances the backward reaction substantially. The resulting rates and corresponding cross sections turn out to be large enough to maintain the abundance of antiprotons at chemical freezeout until the decoupling temperature, in accord with the measured pˉ/p\bar{p}/p ratio in Pb(158AGeV)+Pb collisions.Comment: 4 pages ReVTeX incl. 2 eps-figs, minor changes (two figs added, rate eq. written more explicitly), version accepted for publication in PR
    • 

    corecore