20 research outputs found

    Identification of potential isoform-selective histone deacetylase inhibitors for cancer therapy: a combined approach of structure-based virtual screening, ADMET prediction and molecular dynamics simulation assay

    No full text
    <p>Histone deacetylases (HDACs) have gained increased attention as targets for anticancer drug design and development. HDAC inhibitors have proven to be effective for reversing the malignant phenotype in HDAC-dependent cancer cases. However, lack of selectivity of the many HDAC inhibitors in clinical use and trials contributes to toxicities to healthy cells. It is believed that, the continued identification of isoform-selective inhibitors will eliminate these undesirable adverse effects – a task that remains a major challenge to HDAC inhibitor designs. Here, in an attempt to identify isoform-selective inhibitors, a large compound library containing 2,703,000 compounds retrieved from Otava database was screened against class I HDACs by exhaustive approach of structure-based virtual screening using rDOCK and Autodock Vina. A total of 41 compounds were found to show high-isoform selectivity and were further redocked into their respective targets using Autodock4. Thirty-six compounds showed remarkable isoform selectivity and passed drug-likeness and absorption, distribution, metabolism, elimination and toxicity prediction tests using ADMET Predictor™ and admetSAR. Furthermore, to study the stability of ligand binding modes, 10 ns-molecular dynamics (MD) simulations of the free HDAC isoforms and their complexes with respective best-ranked ligands were performed using nanoscale MD software. The inhibitors remained bound to their respective targets over time of the simulation and the overall potential energy, root-mean-square deviation, root-mean-square fluctuation profiles suggested that the detected compounds may be potential isoform-selective HDAC inhibitors or serve as promising scaffolds for further optimization towards the design of selective inhibitors for cancer therapy.</p

    Ekmek mayası (saccharomyces cerevisiae) yardımı ile L-3,4- dihitroksifenil alanin (L-dopa) için yeni bir sentez yöntemi

    No full text
    Ekmek mayası (saccharomyces cerevisiae) kolay ve ucuz bulunan bir reaktif olmasına karşın, organik kimyada yaptığı tepkimeler hem ilginç hem de diğer sentez yöntemleri ile yapılması ya imkansız ya da çok zordur. Bu amaçla klasik organik sentez yöntemleri ve maya kullanılarak daha önce sentezi bu yolla denenmeyen, anti parkinson ilacı L-3,4-Dihidroksifenilalanin'in sentezine yönelik ikisi orjinal dört önemli substurat hazırlanacak ve bu substratlar üzerinde bulunan karbon karbon çift bağı ekmek mayası ile stereospesifık olarak indirgenmeye çalışılacaktır

    Synthesis, Anticancer Activity on Prostate Cancer Cell Lines and Molecular Modeling Studies of Flurbiprofen-Thioether Derivatives as Potential Target of MetAP (Type II)

    No full text
    Background: Prostate cancer is still one of the serious causes of mortality and morbidity in men. Despite recent advances in anticancer therapy, there is a still need of novel agents with more efficacy and specificity in the treatment of prostate cancer. Because of its function on angiogenesis and overexpression in the prostate cancer, methionine aminopeptidase-2 (MetAP-2) has been a potential target for novel drug design recently

    Histone Deacetylase Inhibition Activity and Molecular Docking of (E )-Resveratrol: Its Therapeutic Potential in Spinal Muscular Atrophy

    No full text
    Spinal muscular atrophy is an autosomal recessive motor neuron disease that is caused by mutation of the survival motor neuron gene (SMN1) but all patients retain a nearly identical copy, SMN2. The disease severity correlates inversely with increased SMN2 copy. Currently, the most promising therapeutic strategy for spinal muscular atrophy is induction of SMN2 gene expression by histone deacetylase inhibitors. Polyphenols are known for protection against oxidative stress and degenerative diseases. Among our candidate prodrug library, we found that (E )-resveratrol, which is one of the polyphenolic compounds, inhibited histone deacetylase activity in a concentration-dependent manner and half-maximum inhibition was observed at 650 mu m. Molecular docking studies showed that (E )-resveratrol had more favorable free energy of binding (-9.09 kcal/mol) and inhibition constant values (0.219 mu m) than known inhibitors. To evaluate the effect of (E )-resveratrol on SMN2 expression, spinal muscular atrophy type I fibroblast cell lines was treated with (E )-resveratrol. The level of full-length SMN2 mRNA and protein showed 1.2- to 1.3-fold increase after treatment with 100 mu m (E )-resveratrol in only one cell line. These results indicate that response to (E )-resveratrol treatment is variable among cell lines. This data demonstrate a novel activity of (E )-resveratrol and that it could be a promising candidate for the treatment of spinal muscular atrophy

    Synthesis, Molecular Docking and Anticancer Activity of Diflunisal Derivatives as Cyclooxygenase Enzyme Inhibitors

    No full text
    Cyclooxygenase enzymes play a vital role in inflammatory pathways in the human body. Apart from their relation with inflammation, the additional involvement of COX-2 enzyme with cancer activity was recently discovered. In some cancer types the level of COX-2 enzyme is increased indicating that this enzyme could be a suitable target for cancer therapy. Based on these findings, we have synthesized some new diflunisal thiosemicarbazides and 1,2,4-triazoles and tested them against androgen-independent prostate adenocarcinoma (PC-3), colon carcinoma (HCT-116), human breast cancer (T47D), breast carcinoma (MCF7) and human embryonic kidney (HEK-293) cell lines. Specifically, the diflunisal and thiosemicarbazide functionality are combined during the synthesis of original compounds anticipating a potency enhancement. Compounds 6, 10, 15 and 16 did not show cytotoxic effects for the HEK293 cell line. Among them, compounds 15 and 16 demonstrated anticancer activity for the breast cancer cell line T47D, whereas compounds 6 and 10 which are thiosemicarbazide derivatives displayed anti-tumourigenic activity against the PC-3 cell line, consistent with the literature. However, no activity was observed for the HCT-116 cancer cell line with the tested thiosemicarbazide derivatives. Only compound 16 displayed activity against the HCT-116 cell line. Therefore, it was speculated that the diflunisal and thiosemicarbazide functionalities potentiate anticancer activity on prostate cancer and the thiosemicarbazide functionality decreases the anticancer activity of diflunisal on colon cancer cell lines. In order to gain insight into the anticancer activity and COX-2 inhibition, molecular docking studies were carried out for COX-1 and COX-2 enzymes utilizing the newly synthesized compounds 15, and 16. Both 15 and 16 showed high selectivity and affinity toward COX-2 isozyme over COX-1, which is in agreement with the experimental results

    Aryl butenoic acid derivatives as a new class of histone deacetylase inhibitors: synthesis, in vitro evaluation, and molecular docking studies

    Get PDF
    New aryl butenoic acid derivatives have been synthesized by combining hydroxy- or methoxy-substituted phenyl rings as the capping group, with a double bond in the short linker as well as metal binding groups, enoic ester, and salts bearing either methyl or morpholine. These compounds have been shown to possess promising histone deacetylase inhibition activities via in vitro fluorometric assay and molecular docking studies
    corecore