1,679 research outputs found

    Infrared studies of a La_(0.67)Ca_(0.33)MnO_3 single crystal: Optical magnetoconductivity in a half-metallic ferromagnet

    Get PDF
    The infrared reflectivity of a La_(0.67)Ca_(0.33)MnO_3 single crystal is studied over a broad range of temperatures (78–340 K), magnetic fields (0–16 T), and wave numbers (20–9000cm^(-1)). The optical conductivity gradually changes from a Drude-like behavior to a broad peak feature near 5000cm-1 in the ferromagnetic state below the Curie temperature T_C=307K. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near T_C

    High entropy alloys:Key issues under passionate debate

    Get PDF
    The present Viewpoint set aims at providing a summary of the recent advancements in the fundamental understanding of high entropy alloys (HEAs) as well as igniting new ideas and activities in this rapidly evolving field of use-inspired basic research. The universality of the core effects in HEAs, ranging from configurational entropy contributions to cocktailing effects are still under a passionate debate and in particular the peer-reviewed articles are meant to provide original perspectives. The various contributions are strongly opinion-based in a variety of areas including diffusion, phase transformations, deformation behavior, corrosion, metastability, structural as well as functional properties. In addition, the impact of the original metallic HEAs onto the field of oxides and ceramics has been illustrated and the role of entropy in high-entropy oxides is critically discussed

    Infrared Studies of a La_{0.67}Ca_{0.33}MnO_3 Single Crystal: Optical Magnetoconductivity in a Half-Metallic Ferromagnet

    Get PDF
    The infrared reflectivity of a La0.67Ca0.33MnO3\rm La_{0.67}Ca_{0.33}MnO_3 single crystal is studied over a broad range of temperatures (78-340 K), magnetic fields (0-16 T), and wavenumbers (20-9000 cm1^{-1}). The optical conductivity gradually changes from a Drude-like behavior to a broad peak feature near 5000 cm1^{-1} in the ferromagnetic state below the Curie temperature TC=307KT_C=307 K. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near TCT_C.Comment: 4 pages, 4 figures, Latex, PostScript; The 7th Joint MMM-Intermag Conference,San Francisco, January 6-9, 1998; The Int. Conf. on Strongly Correlated Electron Systems, Paris, July 15-18,199

    Resonant tunneling of electromagnetic waves through polariton gaps

    Full text link
    We consider resonant tunneling of electromagnetic waves through an optical barrier formed by dielectric layers with the frequency dispersion of their dielectric permiability. The frequency region between lower and upper polariton branches in these materials presents a stop band for electromagnetic waves. We show that resonance tunneling through this kind of barriers is qualitatevely different from tunneling through other kind of optical barriers as well as from quantum mechanic tunneling through a rectangular barrier. We find that the width of the resonance maxima of the transmission coeffcient tends to zero as frequency approach the lower boundary of the stop band in a very sharp non-analytical way. Resonance transmission peaks give rise to new photonic bands inside the stop band if one considers periodical array of the layers.Comment: 8 pages, 5 figure

    AC-coupled GaAs microstrip detectors with a new type of integrated bias resistors

    Get PDF
    Full size single-sided GaAs microstrip detectors with integrated coupling capacitors and bias resistors have been fabricated on 3'' substrate wafers. PECVD deposited SiO_2 and SiO_2/Si_3N_4 layers were used to provide coupling capacitaces of 32.5 pF/cm and 61.6 pF/cm, respectively. The resistors are made of sputtered CERMET using simple lift of technique. The sheet resistivity of 78 kOhm/sq. and the thermal coefficient of resistance of less than 4x10^-3 / degree C satisfy the demands of small area biasing resistors, working on a wide temperature range.Comment: 20 pages, 9 figures, to be published in NIM

    Claudins in intestines

    Get PDF
    Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases

    Differential Effects of Concomitant Use of Vitamins C and E on Trophoblast Apoptosis and Autophagy between Normoxia and Hypoxia-Reoxygenation

    Get PDF
    Concomitant supplementation of vitamins C and E during pregnancy has been reportedly associated with low birth weight, the premature rupture of membranes and fetal loss or perinatal death in women at risk for preeclampsia; however, the cause is unknown. We surmise that hypoxia-reoxygenation (HR) within the intervillous space due to abnormal placentation is the mechanism and hypothesize that concomitant administration of aforementioned vitamin antioxidants detrimentally affects trophoblast cells during HR.Using villous explants, concomitant administration of 50 microM of vitamins C and E was observed to reduce apoptotic and autophagic changes in the trophoblast layer at normoxia (8% oxygen) but to cause more prominent apoptosis and autophagy during HR. Furthermore, increased levels of Bcl-2 and Bcl-xL in association with a decrease in the autophagy-related protein LC3-II were noted in cytotrophoblastic cells treated with vitamins C and E under standard culture conditions. In contrast, vitamin treatment decreased Bcl-2 and Bcl-xL as well as increased mitochondrial Bak and cytosolic LC3-II in cytotrophoblasts subjected to HR.Our results indicate that concomitant administration of vitamins C and E has differential effects on the changes of apoptosis, autophagy and the expression of Bcl-2 family of proteins in the trophoblasts between normoxia and HR. These changes may probably lead to the impairment of placental function and suboptimal growth of the fetus

    Trapping Surface Electrons on Graphene Layers and Islands

    Full text link
    We report the use of time- and angle-resolved two-photon photoemission to map the bound, unoccupied electronic structure of the weakly coupled graphene/Ir(111) system. The energy, dispersion, and lifetime of the lowest three image-potential states are measured. In addition, the weak interaction between Ir and graphene permits observation of resonant transitions from an unquenched Shockley-type surface state of the Ir substrate to graphene/Ir image-potential states. The image-potential-state lifetimes are comparable to those of mid-gap clean metal surfaces. Evidence of localization of the excited electrons on single-atom-layer graphene islands is provided by coverage-dependent measurements

    Depairing currents in the superconductor/ferromagnet proximity system Nb/Fe

    Get PDF
    We have investigated the behaviour of the depairing current J_{dp} in ferromagnet/superconductor/ferromagnet (F/S/F) trilayers as function of the thickness d_s of the superconducting layers. Theoretically, J_{dp} depends on the superconducting order parameter or the pair density function, which is not homogeneous across the film due to the proximity effect. We use a proximity effect model with two parameters (proximity strength and interface transparency), which can also describe the dependence of the superconducting transition temperature T_c on d_s. We compare the computations with the experimentally determined zero-field critical current J_{c0} of small strips (typically 5~ \mu m wide) of Fe/Nb/Fe trilayers with varying thickness d_{Nb} of the Nb layer. Near T_c the temperature dependence J_{c0}(T) is in good agreement with the expected behaviour, which allows extrapolation to T = 0. Both the absolute values of J_{c0}(0) and the dependence on d_{Nb} agree with the expectations for the depairing current. We conclude that J_{dp} is correctly determined, notwithstanding the fact that the strip width is larger than both the superconducting penetration depth and the superconducting coherence length, and that J_{dp}(d_s) is correctly described by the model.Comment: 10 pages, 5 figures, submitted to PR

    Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3 / YBa2Cu3O7 superlattices

    Get PDF
    We study the interplay between magnetism and superconductivity in high quality YBa2Cu3O7 (YBCO) / La0.7Ca0.3MnO3(LCMO)superlattices. We find evidence for the YBCO superconductivity depression in presence of the LCMO layers. We show that due to its short coherence length superconductivity survives in the YBCO down to much smaller thickness in presence of the magnetic layer than in low Tc superconductors. We also find that for a fixed thickness of the superconducting layer, superconductivity is depressed over a thickness interval of the magnetic layer in the 100 nm range. This is a much longer length scale than that predicted by the theory of ferromagnetic/superconducting proximity effect.Comment: 10 pages + 5 figures, submitted to Phys. Rev.
    corecore