69 research outputs found

    The accessibility of public housing in Hong Kong : an analysis of government policy and action

    Get PDF
    published_or_final_versionPolitics and Public AdministrationMasterMaster of Public Administratio

    The Transition from Unfolded to Folded G-Quadruplex DNA Analyzed and Interpreted by Two-Dimensional Infrared Spectroscopy

    Get PDF
    A class of DNA folds/structures known collectively as G-quadruplexes (G4) commonly forms in guanine-rich areas of genomes. G4-DNA is thought to have a functional role in the regulation of gene transcription and telomerase-mediated telomere maintenance and, therefore, is a target for drugs. The details of the molecular interactions that cause stacking of the guanine-tetrads are not well-understood, which limits a rational approach to the drugability of G4 sequences. To explore these interactions, we employed electron-vibration-vibration two-dimensional infrared (EVV 2DIR) spectroscopy to measure extended vibrational coupling spectra for a parallel-stranded G4-DNA formed by the Myc2345 nucleotide sequence. We also tracked the structural changes associated with G4-folding as a function of K+-ion concentration. To classify the structural elements that the folding process generates in terms of vibrational coupling characteristics, we used quantum-chemical calculations utilizing density functional theory to predict the coupling spectra associated with given structures, which are compared against the experimental data. Overall, 102 coupling peaks are experimentally identified and followed during the folding process. Several phenomena are noted and associated with formation of the folded form. This includes frequency shifting, changes in cross-peak intensity, and the appearance of new coupling peaks. We used these observations to propose a folding sequence for this particular type of G4 under our experimental conditions. Overall, the combination of experimental 2DIR data and DFT calculations suggests that guanine-quartets may already be present before the addition of K+-ions, but that these quartets are unstacked until K+-ions are added, at which point the full G4 structure is formed

    Monitoring moisture content for various kind of tea leaves in drying processes using rf reflectometer-sensor system

    Get PDF
    This paper presents tea leaves moisture monitoring system based on RF reflectometry techniques. The system was divided into two parts which are the sensor and reflectometer parts. The large coaxial probe was used as a sensor for the system. The reflectometer part plays a role as signal generator and also data acquisition. The reflectometer-sensor system was operated with a graphical user interface at 1.529 GHz at room temperature. The system was able to measure the moisture content of tea leaves ranging 0% m.c to 50% m.c on a wet basis. In this study, up to five kinds of tea leaves bulk were tested. The mean of absolute errors in the moisture measurement for tea leaves was ±2

    Gene Expression Profiling on the Molecular Action of Danshen-Gegen Formula in a Randomized Placebo-Controlled Trial of Postmenopausal Women with Hypercholesterolemia

    Get PDF
    The Danshen-Gegen formula (DG) is a traditional Chinese herbal formula which has long been used to treat cardiovascular disease. DG was found to be a cardiovascular tonic in our recent research. However, a comprehensive investigation of the molecular mechanism of DG in cardiovascular disease has not been performed. The aim of this study was to clarify the transcriptional profiling of genes modulated by DG on postmenopausal women by using DNAmicroarray technology. We obtained 29 whole blood samples both from DG-treated and placebo-treated subjects. Blood lipid profile and intima-media thickness (IMT) were measured. Affymetrix GeneChip was used to identify differentially expressed genes (DEGs), followed by validation by the real-time PCR method. The results showed that DG-treated group has a significant improvement in IMT and lipid profile as compared to placebo-treated group. For the genomic study, the DG-treated group has a higher number of DEGs identified as compared to the placebo-treated group. Two important biological processes of “regulation of systemic arterial blood pressure by hormone” and “regulation of smooth muscle proliferation” have been identified by GePS in the DG-treated group. No significant biological process and cellular components were identified in the placebo-treated group. This genomic study on the molecular action of DG in postmenopausal women gathered sufficient molecular targets and pathways to reveal that DG could improve neointima thickening and hypertension

    Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease

    Get PDF
    STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore