7,560 research outputs found

    Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations

    Get PDF
    The application of a new implicit unconditionally stable high resolution total variation diminishing (TVD) scheme to steady state calculations. It is a member of a one parameter family of explicit and implicit second order accurate schemes developed by Harten for the computation of weak solutions of hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments show that this scheme not only has a rapid convergence rate, but also generates a highly resolved approximation to the steady state solution. A detailed implementation of the implicit scheme for the one and two dimensional compressible inviscid equations of gas dynamics is presented. Some numerical computations of one and two dimensional fluid flows containing shocks demonstrate the efficiency and accuracy of this new scheme

    On the application and extension of Harten's high resolution scheme

    Get PDF
    Extensions of a second order high resolution explicit method for the numerical computation of weak solutions of one dimensonal hyperbolic conservation laws are discussed. The main objectives were (1) to examine the shock resoluton of Harten's method for a two dimensional shock reflection problem, (2) to study the use of a high resolution scheme as a post-processor to an approximate steady state solution, and (3) to construct an implicit in the delta-form using Harten's scheme for the explicit operator and a simplified iteration matrix for the implicit operator

    A quick-retrieval high-speed digital framing camera

    Get PDF
    A new high-speed digital framing camera is described. The design is built around a rotating polygon mirror that provides a framing rate of 24 000 frames/s. The camera electronics digitizes an image into a 32×104 grid of pixels, where the second dimension of the grid can be varied and is determined by the 8 bit computer-aided measurement and control digitizer sampling rate. Available digitizer memory provides for 314 frames at this horizontal resolution. The advantages over other available high-speed framing cameras are (1) low cost of the system provided the digitizers are available, (2) rapid retrieval of a recorded event, and (3) the ease with which the system can be used. Sample results from an application in high-power arc photography are given to illustrate the system's spatial and temporal resolution

    The Atmosphere Explorer and the shuttle glow

    Get PDF
    Recent analyses of the Atmosphere Explorer data are discussed in which it is demonstrated that the satellite glows have two components, one at high altitudes which is consistent with excitation in single collisions of atmospheric oxygen atoms with the vehicle surface and the other at low altitudes which is consistent with double collisions of nitrogen molecules. Contrary to an earlier suggestion, the low-altitude data are not consistent with collisions of oxygen molecules. The separation of the two components strengthens the conclusion that the high-altitude glow arises from vibrationally excited OH molecules produced by a formation mechanism that is different from that leading to the normal atmospheric OH airglow. The spectrum is consistent with association of oxygen and hydrogen atoms at sites on the surface into the vibrational levels of OH. The low-altitude glow is consistent with the green mechanism but there are difficulties with it. The shuttle glows are different and have the spectral appearance of emission from NO2. The characteristics of the shuttle glows and the satellite glows will be contrasted and a tentative resolution of the differences in the Atmosphere Explorer and shuttle glows will be offered

    A high order compact scheme for hypersonic aerothermodynamics

    Get PDF
    A novel high order compact scheme for solving the compressible Navier-Stokes equations has been developed. The scheme is an extension of a method originally proposed for solving the Euler equations, and combines several techniques for the solution of compressible flowfields, such as upwinding, limiting and flux vector splitting, with the excellent properties of high order compact schemes. Extending the method to the Navier-Stokes equations is achieved via a Kinetic Flux Vector Splitting technique, which represents an unusual and attractive way to include viscous effects. This approach offers a more accurate and less computationally expensive technique than discretizations based on more conventional operator splitting. The Euler solver has been validated against several inviscid test cases, and results for several viscous test cases are also presented. The results confirm that the method is stable, accurate and has excellent shock-capturing capabilities for both viscous and inviscid flows

    Dynamical Masses of RCS Galaxy Clusters

    Full text link
    A multi-object spectroscopy follow-up survey of galaxy clusters selected from the Red-sequence Cluster Survey (RCS) is being completed. About forty clusters were chosen with redshifts from 0.15 to 0.6, and in a wide range of richnesses. One of the main science drivers of this survey is a study of internal dynamics of clusters. We present some preliminary results for a subset of the clusters, including the correlation of optical richness with mass, and the mass-to-light ratio as a function of cluster mass.Comment: 5 pages, 5 figures, to appear in the Proceedings of IAU Colloquium 195: "Outskirts of Galaxy Clusters: intense life in the suburbs", Torino Italy, March 200

    Variable high-order multiblock overlapping grid methods for mixed steady and unsteady multiscale viscous flows, part II: hypersonic nonequilibrium flows

    Get PDF
    The variable high-order multiblock overlapping (overset) grids method of Sjogreen & Yee (CiCP, Vol.5, 2008) for a perfect gas has been extended to nonequilibrium flows. This work makes use of the recently developed high-order well-balanced shock-capturing schemes and their filter counterparts (Wang et al., J. Comput. Phys., 2009, 2010) that exactly preserve certain non-trivial steady state solutions of the chemical nonequilibrium governing equations. Multiscale turbulence with strong shocks and flows containing both steady and unsteady components is best treated by mixing of numerical methods and switching on the appropriate scheme in the appropriate subdomains of the flow fields, even under the multiblock grid or adaptive grid refinement framework. While low dissipative sixth- or higher-order shock-capturing filter methods are appropriate for unsteady turbulence with shocklets, second- and third-order shock-capturing methods are more effective for strong steady or nearly steady shocks in terms of convergence. It is anticipated that our variable high-order overset grid framework capability with its highly modular design will allow an optimum synthesis of these new algorithms in such a way that the most appropriate spatial discretizations can be tailored for each particular region of the flow. In this paper some of the latest developments in single block high-order filter schemes for chemical nonequilibrium flows are applied to overset grid geometries. The numerical approach is validated on a number of test cases characterized by hypersonic conditions with strong shocks, including the reentry flow surrounding a 3D Apollo-like NASA Crew Exploration Vehicle that might contain mixed steady and unsteady components, depending on the flow conditions

    Star Formation in Cluster Galaxies at 0.2<z<0.55

    Get PDF
    The rest frame equivalent width of the [OII]3727 emission line, W(OII), has been measured for cluster and field galaxies in the CNOC redshift survey of rich clusters at 0.2<z<0.55. Emission lines of any strength in cluster galaxies at all distances from the cluster centre, out to 2R_{200}, are less common than in field galaxies. The mean W(OII) in cluster galaxies more luminous than M_r^k<-18.5 + 5\log h (q_o=0.1) is 3.8 \pm 0.3 A (where the uncertainty is the 1 sigma error in the mean), significantly less than the field galaxy mean of 11.2 \pm 0.3 A. For the innermost cluster members (R<0.3R_{200}), the mean W(OII) is only 0.3 \pm 0.4 A. Thus, it appears that neither the infall process nor internal tides in the cluster induce detectable excess star formation in cluster galaxies relative to the field. The colour-radius relation of the sample is unable to fully account for the lack of cluster galaxies with W(OII)>10 A, as expected in a model of cluster formation in which star formation is truncated upon infall. Evidence of supressed star formation relative to the field is present in the whole cluster sample, out to 2 R_{200}, so the mechanism responsible for the differential evolution must be acting at a large distance from the cluster centre, and not just in the core. The mean star formation rate in the cluster galaxies with the strongest emission corresponds to an increase in the total stellar mass of less than about 4% if the star formation is due to a secondary burst lasting 0.1 Gyr.Comment: aasms4 latex, 3 postscript figures, accepted for publication in ApJ Letters. Also available at http://astrowww.phys.uvic.ca/~balogh

    Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NO_x conditions

    Get PDF
    We present first-generation and total production yields of glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone from the oxidation of isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) with OH under high NO_x conditions. Several of these first-generation yields are not included in commonly used chemical mechanisms, such as the Leeds Master Chemical Mechanism (MCM) v. 3.2. The first-generation yield of glyoxal from isoprene was determined to be 2.1 (±0.6)%. Inclusion of first-generation production of glyoxal, glycolaldehyde and hydroxyacetone from isoprene greatly improves performance of an MCM based model during the initial part of the experiments. In order to further improve performance of the MCM based model, higher generation glyoxal production was reduced by lowering the first-generation yield of glyoxal from C5 hydroxycarbonyls. The results suggest that glyoxal production from reaction of OH with isoprene under high NO_x conditions can be approximated by inclusion of a first-generation production term together with secondary production only via glycolaldehyde. Analogously, methylglyoxal production can be approximated by a first-generation production term from isoprene, and secondary production via MVK, MACR and hydroxyacetone. The first-generation yields reported here correspond to less than 5% of the total oxidized yield from isoprene and thus only have a small effect on the fate of isoprene. However, due to the abundance of isoprene, the combination of first-generation yields and reduced higher generation production of glyoxal from C5 hydroxycarbonyls is important for models that include the production of the small organic molecules from isoprene

    The dynamics of z~1 clusters of galaxies from the GCLASS survey

    Get PDF
    We constrain the internal dynamics of a stack of 10 clusters from the GCLASS survey at 0.87<z<1.34. We determine the stack cluster mass profile M(r) using the MAMPOSSt algorithm of Mamon et al., the velocity anisotropy profile beta(r) from the inversion of the Jeans equation, and the pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The total mass distribution has a concentration c=r200/r-2=4.0-0.6+1.0, in agreement with theoretical expectations, and is less concentrated than the cluster stellar-mass distribution. The stack cluster beta(r) is similar for passive and star-forming galaxies and indicates isotropic galaxy orbits near the cluster center and increasingly radially elongated with increasing cluster-centric distance. Q(r) and Qr(r) are almost power-law relations with slopes similar to those predicted from numerical simulations of dark matter halos. Combined with results obtained for lower-z clusters we determine the dynamical evolution of galaxy clusters, and compare it with theoretical predictions. We discuss possible physical mechanisms responsible for the differential evolution of total and stellar mass concentrations, and of passive and star-forming galaxy orbits [abridged].Comment: 12 pages, 7 figures. Version accepted for publication in A&A after minor modification
    corecore