126 research outputs found

    Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Get PDF
    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process

    BDNF Promoterā€“Mediated Ī²-Galactosidase Expression in the Olfactory Epithelium and Bulb

    Get PDF
    The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on Ī²-galactosidase (Ī²-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNFlacZneo mice). We find that Ī²-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of Ī²-gal in Ī³-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB

    Secondary Organic Aerosol Composition from Cā‚ā‚‚ Alkanes

    Get PDF
    The effects of structure, NO_x conditions, relative humidity, and aerosol acidity on the chemical composition of secondary organic aerosol (SOA) are reported for the photooxidation of three C_(12) alkanes: n-dodecane, cyclododecane, and hexylcyclohexane. Acidity was modified through seed particle composition: NaCl, (NH_4)_2SO_4, and (NH_4)_2SO_4 + H_2SO_4. Off-line analysis of SOA was carried out by solvent extraction and gas chromatographyā€“mass spectrometry (GC/MS) and direct analysis in real-time mass spectrometry. We report here 750 individual masses of SOA products identified from these three alkane systems and 324 isomers resolved by GC/MS analysis. The chemical compositions for each alkane system provide compelling evidence of particle-phase chemistry, including reactions leading to oligomer formation. Major oligomeric species for alkane SOA are peroxyhemiacetals, hemiacetals, esters, and aldol condensation products. Furans, dihydrofurans, hydroxycarbonyls, and their corresponding imine analogues are important participants in these oligomer-producing reactions. Imines are formed in the particle phase from the reaction of the ammonium sulfate seed aerosol with carbonyl-bearing compounds present in all the SOA systems. Under high-NO conditions, organonitrate products can lead to an increase of aerosol volume concentration by up to a factor of 5 over that in low-NO conditions. Structure was found to play a key role in determining the degree of functionalization and fragmentation of the parent alkane, influencing the mean molecular weight of the SOA produced and the mean atomic O:C ratio

    Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass Burning Emissions

    Get PDF
    Biomass burning is the largest combustion-related source of volatile organic compounds (VOCs) to the atmosphere. We describe the development of a state-of-the-science model to simulate the photochemical formation of secondary organic aerosol (SOA) from biomass-burning emissions observed in dry (RH <20%) environmental chamber experiments. The modeling is supported by (i) new oxidation chamber measurements, (ii) detailed concurrent measurements of SOA precursors in biomass-burning emissions, and (iii) development of SOA parameters for heterocyclic and oxygenated aromatic compounds based on historical chamber experiments. We find that oxygenated aromatic compounds, including phenols and methoxyphenols, account for slightly less than 60% of the SOA formed and help our model explain the variability in the organic aerosol mass (RĀ² = 0.68) and O/C (RĀ² = 0.69) enhancement ratios observed across 11 chamber experiments. Despite abundant emissions, heterocyclic compounds that included furans contribute to āˆ¼20% of the total SOA. The use of pyrolysis-temperature-based or averaged emission profiles to represent SOA precursors, rather than those specific to each fire, provide similar results to within 20%. Our findings demonstrate the necessity of accounting for oxygenated aromatics from biomass-burning emissions and their SOA formation in chemical mechanisms

    Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia

    Get PDF
    The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6ā€Æh downwind of Manaus, Brazil. Measurements took place from February through MarchĀ 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Mass spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (IEPOX-SOA factor) was associated with PM production by the IEPOX pathway. The IEPOX-SOA factor loadings correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C5-alkene triols and 2-methyltetrols (Rā€‰=ā€‰0.ā€‰96 and 0.78, respectively). The factor loading, as well as the ratio f of the loading to organic PM mass concentration, decreased under polluted compared to background conditions. For an increase in NOy concentration from 0.5 to 2ā€Æppb, the factor loading and f decreased by two to three fold. Overall, sulfate concentration explained 37ā€Æ% of the variability in the factor loading. After segregation of factor loading into subsets based on NOy concentration, the sulfate concentration explained up to 75ā€Æ% of the variability. Considering both factors, the data sets show that the suppressing effects of increased NO concentrations dominated over the enhancing effects of higher sulfate concentrations. The pollution from Manaus elevated NOy concentrations more significantly than sulfate concentrations relative to background conditions. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.</html

    Human Whole-Exome Genotype Data For alzheimer\u27s Disease

    Get PDF
    The heterogeneity of the whole-exome sequencing (WES) data generation methods present a challenge to a joint analysis. Here we present a bioinformatics strategy for joint-calling 20,504 WES samples collected across nine studies and sequenced using ten capture kits in fourteen sequencing centers in the Alzheimer\u27s Disease Sequencing Project. The joint-genotype called variant-called format (VCF) file contains only positions within the union of capture kits. The VCF was then processed specifically to account for the batch effects arising from the use of different capture kits from different studies. We identified 8.2 million autosomal variants. 96.82% of the variants are high-quality, and are located in 28,579 Ensembl transcripts. 41% of the variants are intronic and 1.8% of the variants are with CADDā€‰\u3eā€‰30, indicating they are of high predicted pathogenicity. Here we show our new strategy can generate high-quality data from processing these diversely generated WES samples. The improved ability to combine data sequenced in different batches benefits the whole genomics research community

    New formation and fate of Isoprene SOA markers revealed by field data-constrained modeling

    Get PDF
    Particulate 2-methyltetrols (2-MT) and 2-methylglyceric acid (2-MG) are typically used to indicate the abundance of isoprene-derived secondary organic aerosols (SOA). However, their formation and fate are not fully understood. In this study, we showed that particulate 2-MT and 2-MG collected at multiple monitoring sites under a wide range of atmospheric and emission conditions, with concentrations spanning six orders of magnitudes, are well reproduced with an expanded isoprene-SOA scheme implemented into the Community Multiscale Air Quality (CMAQ) model. The scheme considers their three-phase (gas-aqueous-organic phase) partitioning, formation from acid-driven multiphase reactions, and degradation by OH radicals in the gas and aqueous phases. The model results reveal that a non-aqueous formation pathway or direct biogenic emission is needed to supplement the commonly assumed acid-driven multiphase reaction process to explain the observed 2-MT concentrations. This missing pathway contributes to 20ā€“40% of 2-MT in areas with aerosol pH<2 and more than 70% under less acidic conditions (pH~2ā€“5), such as those encountered in the western US and China. The typical summertime gas-phase photochemical lifetimes of 2-MT and 2-MG are estimated to be 4ā€“6 and 20ā€“30 h, respectively, and their aqueous lifetimes are approximately 20ā€“40 h. Our simulations show that predicted 2-MT is mainly influenced by its aqueous phase loss to OH, but 2-MG is more sensitive to gas phase OH loss due to the preferential partitioning of the two tracers in the aqueous and gas phases, respectively

    Genome-wide association study identifies four novel loci associated with Alzheimer's endophenotypes and disease modifiers

    Get PDF
    More than 20 genetic loci have been associated with risk for Alzheimer's disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case-control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (AĪ²42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau181, including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with AĪ²42 near GLIS1 on 1p32.3 (Ī² = -0.059, P = 2.08 Ɨ 10-8) and within SERPINB1 on 6p25 (Ī² = -0.025, P = 1.72 Ɨ 10-8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 Ɨ 10-2), disease progression (GLIS1: Ī² = 0.277, P = 1.92 Ɨ 10-2), and age at onset (SERPINB1: Ī² = 0.043, P = 4.62 Ɨ 10-3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an AĪ²-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF AĪ²42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings from this study can be used to inform future AD studies

    Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and coronary artery disease in 19 case-control studies

    Get PDF

    Metformin and the gastrointestinal tract

    Get PDF
    Metformin is an effective agent with a good safety profile that is widely used as a first-line treatment for type 2 diabetes, yet its mechanisms of action and variability in terms of efficacy and side effects remain poorly understood. Although the liver is recognised as a major site of metformin pharmacodynamics, recent evidence also implicates the gut as an important site of action. Metformin has a number of actions within the gut. It increases intestinal glucose uptake and lactate production, increases GLP-1 concentrations and the bile acid pool within the intestine, and alters the microbiome. A novel delayed-release preparation of metformin has recently been shown to improve glycaemic control to a similar extent to immediate-release metformin, but with less systemic exposure. We believe that metformin response and tolerance is intrinsically linked with the gut. This review examines the passage of metformin through the gut, and how this can affect the efficacy of metformin treatment in the individual, and contribute to the side effects associated with metformin intolerance
    • ā€¦
    corecore