117 research outputs found
Transfer of K-types on local theta lifts of characters and unitary lowest weight modules
In this paper we study representations of the indefinite orthogonal group
O(n,m) which are local theta lifts of one dimensional characters or unitary
lowest weight modules of the double covers of the symplectic groups. We apply
the transfer of K-types on these representations of O(n,m), and we study their
effects on the dual pair correspondences. These results provide examples that
the theta lifting is compatible with the transfer of K-types. Finally we will
use these results to study subquotients of some cohomologically induced
modules
Spin-Imbalance in a One-Dimensional Fermi Gas
Superconductivity and magnetism generally do not coexist. Changing the
relative number of up and down spin electrons disrupts the basic mechanism of
superconductivity, where atoms of opposite momentum and spin form Cooper pairs.
Nearly forty years ago Fulde and Ferrell and Larkin and Ovchinnikov proposed an
exotic pairing mechanism (FFLO) where magnetism is accommodated by formation of
pairs with finite momentum. Despite intense theoretical and experimental
efforts, however, polarized superconductivity remains largely elusive. Here we
report experimental measurements of density profiles of a two spin mixture of
ultracold 6Li atoms trapped in an array of one dimensional (1D) tubes, a system
analogous to electrons in 1D wires. At finite spin imbalance, the system phase
separates with an inverted phase profile in comparison to the three-dimensional
case. In 1D we find a partially polarized core surrounded by wings composed of
either a completely paired BCS superfluid or a fully polarized Fermi gas,
depending on the degree of polarization. Our observations are in quantitative
agreement with theoretical calculations in which the partially polarized phase
is found to be a 1D analogue of the FFLO state. This study demonstrates how
ultracold atomic gases in 1D may be used to create non-trivial new phases of
matter, and also paves the way for direct observation and further study of the
FFLO phase.Comment: 30 pages, 7 figure
Pressure Dependence of Born Effective Charges, Dielectric Constant and Lattice Dynamics in SiC
The pressure dependence of the Born effective charge, dielectric constant and
zone-center LO and TO phonons have been determined for -SiC by a linear
response method based on the linearized augmented plane wave calculations
within the local density approximation. The Born effective charges are found to
increase nearly linearly with decreasing volume down to the smallest volume
studied, , corresponding to a pressure of about 0.8 Mbar. This
seems to be in contradiction with the conclusion of the turnover behavior
recently reported by Liu and Vohra [Phys.\ Rev.\ Lett.\ {\bf 72}, 4105 (1994)]
for -SiC. Reanalyzing their procedure to extract the pressure dependence of
the Born effective charges, we suggest that the turnover behavior they obtained
is due to approximations in the assumed pressure dependence of the dielectric
constant , the use of a singular set of experimental data
for the equation of state, and the uncertainty in measured phonon frequencies,
especially at high pressure.Comment: 25 pages, revtex, 5 postscript figures appended, to be published in
Phys. Rev.
Increasing the versatility of the biphenyl-fused-dioxacyclodecyne class of strained alkynes
Biphenyl-fused-dioxacyclodecynes are a promising class of strained alkyne for use in Cu-free ‘click’ reactions. In this paper, a series of functionalised derivatives of this class of reagent, containing fluorescent groups, are described. Studies aimed at understanding and increasing the reactivity of the alkynes are also presented, together with an investigation of the bioconjugation of the reagents with an azide-labelled protein
Genomic Binding Profiling of the Fission Yeast Stress-Activated MAPK Sty1 and the bZIP Transcriptional Activator Atf1 in Response to H2O2
10.1371/journal.pone.0011620PLoS ONE57
Robust simplifications of multiscale biochemical networks
<p>Abstract</p> <p>Background</p> <p>Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled as large networks of biochemical reactions. In order to understand the functioning of these systems, there is a strong need for general model reduction techniques allowing to simplify models without loosing their main properties. In systems biology we also need to compare models or to couple them as parts of larger models. In these situations reduction to a common level of complexity is needed.</p> <p>Results</p> <p>We propose a systematic treatment of model reduction of multiscale biochemical networks. First, we consider linear kinetic models, which appear as "pseudo-monomolecular" subsystems of multiscale nonlinear reaction networks. For such linear models, we propose a reduction algorithm which is based on a generalized theory of the limiting step that we have developed in <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Second, for non-linear systems we develop an algorithm based on dominant solutions of quasi-stationarity equations. For oscillating systems, quasi-stationarity and averaging are combined to eliminate time scales much faster and much slower than the period of the oscillations. In all cases, we obtain robust simplifications and also identify the critical parameters of the model. The methods are demonstrated for simple examples and for a more complex model of NF-<it>κ</it>B pathway.</p> <p>Conclusion</p> <p>Our approach allows critical parameter identification and produces hierarchies of models. Hierarchical modeling is important in "middle-out" approaches when there is need to zoom in and out several levels of complexity. Critical parameter identification is an important issue in systems biology with potential applications to biological control and therapeutics. Our approach also deals naturally with the presence of multiple time scales, which is a general property of systems biology models.</p
Angiopoietin-1 promotes functional neovascularization that relieves ischemia by improving regional reperfusion in a swine chronic myocardial ischemia model
10.1007/s11373-006-9082-xJournal of Biomedical Science134579-59
Plasmodesmal receptor-like kinases identified through analysis of rice cell wall extracted proteins
In plants, plasmodesmata (PD) are intercellular channels that function in both metabolite exchange and the transport of proteins and RNAs. Currently, many of the PD structural and regulatory components remain to be elucidated. Receptor-like kinases (RLKs) belonging to a notably expanded protein family in plants compared to the animal kingdom have been shown to play important roles in plant growth, development, pathogen resistance, and cell death. In this study, cell biological approaches were used to identify potential PD-associated RLK proteins among proteins contained within cell walls isolated from rice callus cultured cells. A total of 15 rice RLKs were investigated to determine their subcellular localization, using an Agrobacterium-mediated transient expression system. Of these six PD-associated RLKs were identified based on their co-localization with a viral movement protein that served as a PD marker, plasmolysis experiments, and subcellular localization at points of wall contact between spongy mesophyll cells. These findings suggest potential PD functions in apoplasmic signaling in response to environmental stimuli and developmental inputs
Retinoic Acid-Dependent Signaling Pathways and Lineage Events in the Developing Mouse Spinal Cord
Studies in avian models have demonstrated an involvement of retinoid signaling in early neural tube patterning. The roles of this signaling pathway at later stages of spinal cord development are only partly characterized. Here we use Raldh2-null mouse mutants rescued from early embryonic lethality to study the consequences of lack of endogenous retinoic acid (RA) in the differentiating spinal cord. Mid-gestation RA deficiency produces prominent structural and molecular deficiencies in dorsal regions of the spinal cord. While targets of Wnt signaling in the dorsal neuronal lineage are unaltered, reductions in Fibroblast Growth Factor (FGF) and Notch signaling are clearly observed. We further provide evidence that endogenous RA is capable of driving stem cell differentiation. Raldh2 deficiency results in a decreased number of spinal cord derived neurospheres, which exhibit a reduced differentiation potential. Raldh2-null neurospheres have a decreased number of cells expressing the neuronal marker β-III-tubulin, while the nestin-positive cell population is increased. Hence, in vivo retinoid deficiency impaired neural stem cell growth. We propose that RA has separable functions in the developing spinal cord to (i) maintain high levels of FGF and Notch signaling and (ii) drive stem cell differentiation, thus restricting both the numbers and the pluripotent character of neural stem cells
- …