11 research outputs found

    The Interplay Between Hydrogen Sulfide and Phytohormone Signaling Pathways Under Challenging Environments

    Get PDF
    Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants

    Electronically phase separated nano-network in antiferromagnetic insulating LaMnO3/PrMnO3/CaMnO3 tricolor superlattice

    Full text link
    Strongly correlated materials often exhibit an electronic phase separation (EPS) phenomena whose domain pattern is random in nature. The ability to control the spatial arrangement of the electronic phases at microscopic scales is highly desirable for tailoring their macroscopic properties and/or designing novel electronic devices. Here we report the formation of EPS nanoscale network in a mono-atomically stacked LaMnO3/CaMnO3/PrMnO3 superlattice grown on SrTiO3 (STO) (001) substrate, which is known to have an antiferromagnetic (AFM) insulating ground state. The EPS nano-network is a consequence of an internal strain relaxation triggered by the structural domain formation of the underlying STO substrate at low temperatures. The same nanoscale network pattern can be reproduced upon temperature cycling allowing us to employ different local imaging techniques to directly compare the magnetic and transport state of a single EPS domain. Our results confirm the one-to-one correspondence between ferromagnetic (AFM) to metallic (insulating) state in manganite. It also represents a significant step in a paradigm shift from passively characterizing EPS in strongly correlated systems to actively engaging in its manipulation

    Anatase TiO 2

    No full text

    The Study of a Novel Paeoniflorin-Converting Enzyme from <i>Cunninghamella blakesleeana</i>

    No full text
    Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 °C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood–brain barrier into the brain

    The Study of a Novel Paeoniflorin-Converting Enzyme from Cunninghamella blakesleeana

    No full text
    Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 &deg;C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood&ndash;brain barrier into the brain

    The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments

    No full text
    Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant&ndash;environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants

    Bioactive phytochemicals and their potential roles in modulating gut microbiota

    No full text
    Dietary phytochemicals, including polyphenols, sulfur-containing compounds, terpenoids, polysaccharides, saponins, pigments, and phytohaemagglutinins, have antioxidant, anti-inflammatory, antiviral, and cancer-preventive or therapeutic properties. Upon entering the body, these compounds pass through the stomach, liver, small intestine, and colon in that order. Bacteria play an important role in the absorption and processing of dietary phytochemicals in the small intestine and in the large intestine. However, the specific processes by which dietary phytochemicals are absorbed and metabolized in the host colon have not been elucidated. This paper describes the metabolism of phytochemicals (including polyphenols, terpenoids, and plant organosulfides) in the colon and describes the roles played by these dietary phytochemicals in the colon, with emphasis on their effects on the gut microbiota. Upon entry into the host, phytochemicals are absorbed and metabolized mainly in the colon, and the differences in their absorption and metabolism are largely due to differences in the colonic microbiota. Moreover, phytochemicals can be absorbed in the intestine by acting on them through enzymes produced by intestinal cells and stem cells, or by interacting with the intestinal flora, thus ameliorating the associated diseases
    corecore