315 research outputs found

    High Coherence Mid-Infrared Dual Comb Spectroscopy Spanning 2.6 to 5.2 microns

    Full text link
    Mid-infrared dual-comb spectroscopy has the potential to supplant conventional high-resolution Fourier transform spectroscopy in applications that require high resolution, accuracy, signal-to-noise ratio, and speed. Until now, dual-comb spectroscopy in the mid-infrared has been limited to narrow optical bandwidths or to low signal-to-noise ratios. Using a combination of digital signal processing and broadband frequency conversion in waveguides, we demonstrate a mid-infrared dual-comb spectrometer that can measure comb-tooth resolved spectra across an octave of bandwidth in the mid-infrared from 2.6-5.2 μ\mum with sub-MHz frequency precision and accuracy and with a spectral signal-to-noise ratio as high as 6500. As a demonstration, we measure the highly structured, broadband cross-section of propane (C3H8) in the 2860-3020 cm-1 region, the complex phase/amplitude spectrum of carbonyl sulfide (COS) in the 2000 to 2100 cm-1 region, and the complex spectra of methane, acetylene, and ethane in the 2860-3400 cm-1 region

    Frequency stability characterization of a broadband fiber Fabry-Perot interferometer

    Get PDF
    An optical etalon illuminated by a white light source provides a broadband comb-like spectrum that can be employed as a calibration source for astronomical spectrographs in radial velocity (RV) surveys for extrasolar planets. For this application the frequency stability of the etalon is critical, as its transmission spectrum is susceptible to frequency fluctuations due to changes in cavity temperature, optical power and input polarization. In this paper we present a laser frequency comb measurement technique to characterize the frequency stability of a custom-designed fiber Fabry-Perot interferometer (FFP). Simultaneously probing the stability of two etalon resonance modes, we assess both the absolute stability of the etalon and the long-term stability of the cavity dispersion. We measure mode positions with MHz precision, which corresponds to splitting the FFP resonances by a part in 500 and to RV precision of ~1 m/s. We address limiting systematic effects, including the presence of parasitic etalons, that need to be overcome to push the metrology of this system to the equivalent RV precision of 10 cm/s. Our results demonstrate a means to characterize environmentally-driven perturbations of etalon resonance modes across broad spectral bandwidths, as well as motivate the benefits and challenges of FFPs as spectrograph calibrators.Comment: 15 pages, 9 figures, accepted to Opt. Expres

    A near infrared frequency comb for Y+J band astronomical spectroscopy

    Full text link
    Radial velocity (RV) surveys supported by high precision wavelength references (notably ThAr lamps and I2 cells) have successfully identified hundreds of exoplanets; however, as the search for exoplanets moves to cooler, lower mass stars, the optimum wave band for observation for these objects moves into the near infrared (NIR) and new wavelength standards are required. To address this need we are following up our successful deployment of an H band(1.45-1.7{\mu}m) laser frequency comb based wavelength reference with a comb working in the Y and J bands (0.98-1.3{\mu}m). This comb will be optimized for use with a 50,000 resolution NIR spectrograph such as the Penn State Habitable Zone Planet Finder. We present design and performance details of the current Y+J band comb.Comment: Submitted to SPIE, conference proceedings 845

    Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides

    Full text link
    We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-χ(2)\chi^{(2)} nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive-wave generation in the 2.5--3 \text{\mu}m region and intra-pulse difference-frequency generation in the 4--5 \text{\mu}m region. By engineering the quasi-phase-matched grating profiles, tunable, narrow-band MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment---and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology

    Mid-Infrared Optical Frequency Combs based on Difference Frequency Generation for Molecular Spectroscopy

    Get PDF
    Mid-infrared femtosecond optical frequency combs were produced by difference frequency generation of the spectral components of a near-infrared comb in a 3-mm-long MgO:PPLN crystal. We observe strong pump depletion and 9.3 dB parametric gain in the 1.5 \mu m signal, which yields powers above 500 mW (3 \mu W/mode) in the idler with spectra covering 2.8 \mu m to 3.5 \mu m. Potential for broadband, high-resolution molecular spectroscopy is demonstrated by absorption spectra and interferograms obtained by heterodyning two combs.Comment: 11 pages, 8 figure

    Optical Frequency Comb Generation based on Erbium Fiber Lasers

    Get PDF
    Citation: Droste, S., Ycas, G., Washburn, B. R., Coddington, I., & Newbury, N. R. (2016). Optical Frequency Comb Generation based on Erbium Fiber Lasers. Nanophotonics, 5(2), 196-213. doi:10.1515/nanoph-2016-0019Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb

    The Habitable-zone Planet Finder Calibration System

    Full text link
    We present the design concept of the wavelength calibration system for the Habitable-zone Planet Finder instrument (HPF), a precision radial velocity (RV) spectrograph designed to detect terrestrial-mass planets around M-dwarfs. HPF is a stabilized, fiber-fed, R\sim50,000 spectrograph operating in the near-infrared (NIR) z/Y/J bands from 0.84 to 1.3 microns. For HPF to achieve 1 m s1^{-1} or better measurement precision, a unique calibration system, stable to several times better precision, will be needed to accurately remove instrumental effects at an unprecedented level in the NIR. The primary wavelength calibration source is a laser frequency comb (LFC), currently in development at NIST Boulder, discussed separately in these proceedings. The LFC will be supplemented by a stabilized single-mode fiber Fabry-Perot interferometer reference source and Uranium-Neon lamp. The HPF calibration system will combine several other new technologies developed by the Penn State Optical-Infrared instrumentation group to improve RV measurement precision including a dynamic optical coupling system that significantly reduces modal noise effects. Each component has been thoroughly tested in the laboratory and has demonstrated significant performance gains over previous NIR calibration systems.Comment: 6 pages, 5 figures, SPIE Astronomical Telescopes and Instrumentation 201

    Demonstration of a Near-IR Laser Comb for Precision Radial Velocity Measurements in Astronomy

    Get PDF
    We describe a successful effort to produce a laser comb around 1.55 μ\mum in the astronomical H band using a method based on a line-referenced, electro-optical-modulation frequency comb. We discuss the experimental setup, laboratory results, and proof of concept demonstrations at the NASA Infrared Telescope Facility (IRTF) and the Keck-II telescope. The laser comb has a demonstrated stability of << 200 kHz, corresponding to a Doppler precision of ~0.3 m/s. This technology, when coupled with a high spectral resolution spectrograph, offers the promise of <<1 m/s radial velocity precision suitable for the detection of Earth-sized planets in the habitable zones of cool M-type stars

    Coherent ultra-violet to near-infrared generation in silica ridge waveguides

    Get PDF
    Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology
    corecore