54 research outputs found

    A Novel Adaptive Level Set Segmentation Method

    Get PDF
    The adaptive distance preserving level set (ADPLS) method is fast and not dependent on the initial contour for the segmentation of images with intensity inhomogeneity, but it often leads to segmentation with compromised accuracy. And the local binary fitting model (LBF) method can achieve segmentation with higher accuracy but with low speed and sensitivity to initial contour placements. In this paper, a novel and adaptive fusing level set method has been presented to combine the desirable properties of these two methods, respectively. In the proposed method, the weights of the ADPLS and LBF are automatically adjusted according to the spatial information of the image. Experimental results show that the comprehensive performance indicators, such as accuracy, speed, and stability, can be significantly improved by using this improved method

    Identification of a laccase Glac15 from Ganoderma lucidum 77002 and its application in bioethanol production

    Get PDF
    Background Laccases have potential applications in detoxification of lignocellulosic biomass after thermochemical pretreatment and production of value-added products or biofuels from renewable biomass. However, their application in large-scale industrial and environmental processes has been severely thwarted by the high cost of commercial laccases. Therefore, it is necessary to identify new laccases with lower cost but higher activity to detoxify lignocellulosic hydrolysates and better efficiency to produce biofuels such as bioethanol. Laccases from Ganoderma lucidum represent proper candidates in processing of lignocellulosic biomass. Results G. lucidum 77002 produces three laccase isoenzymes with a total laccase activity of 141.1 U/mL within 6 days when using wheat bran and peanut powder as energy sources in liquid culture medium. A new isoenzyme named Glac15 was identified, purified, and characterized. Glac15 possesses an optimum pH of 4.5 to 5.0 and a temperature range of 45°C to 55°C for the substrates tested. It was stable at pH values ranging from 5.0 to 7.0 and temperatures lower than 55°C, with more than 80% activity retained after incubation for 2 h. When used in bioethanol production process, 0.05 U/mL Glac15 removed 84% of the phenolic compounds in prehydrolysate, and the yeast biomass reached 11.81 (optimal density at 600 nm (OD600)), compared to no growth in the untreated one. Addition of Glac15 before cellulase hydrolysis had no significant effect on glucose recovery. However, ethanol yield were improved in samples treated with laccases compared to that in control samples. The final ethanol concentration of 9.74, 10.05, 10.11, and 10.81 g/L were obtained from samples containing only solid content, solid content treated with Glac15, solid content containing 50% prehydrolysate, and solid content containing 50% prehydrolysate treated with Glac15, respectively. Conclusions The G. lucidum laccase Glac15 has potentials in bioethanol production industry

    CIP, a Cardiac Isl1-Interacting Protein, Represses Cardiomyocyte Hypertrophy

    Get PDF
    Mammalian heart has minimal regenerative capacity. In response to mechanical or pathological stress, the heart undergoes cardiac remodeling. Pressure and volume overload in the heart cause increased size (hypertrophic growth) of cardiomyocytes. Whereas the regulatory pathways that activate cardiac hypertrophy have been well established, the molecular events that inhibit or repress cardiac hypertrophy are less known

    Immune and oxidative stress disorder in ovulation-dysfunction women revealed by single-cell transcriptome

    Get PDF
    IntroductionOvulation dysfunction is now a widespread cause of infertility around the world. Although the impact of immune cells in human reproduction has been widely investigated, systematic understanding of the changes of the immune atlas under female ovulation remain less understood.MethodsHere, we generated single cell transcriptomic profiles of 80,689 PBMCs in three representative statuses of ovulation dysfunction, i.e., polycystic ovary syndrome (PCOS), primary ovarian insufficiency (POI) and menopause (MENO), and identified totally 7 major cell types and 25 subsets of cells.ResultsOur study revealed distinct cluster distributions of immune cells among individuals of ovulation disorders and health. In patients with ovulation dysfunction, we observed a significant reduction in populations of naïve CD8 T cells and effector memory CD4 T cells, whereas circulating NK cells and regulatory NK cells increased.DiscussionOur results highlight the significant contribution of cDC-mediated signaling pathways to the overall inflammatory response within ovulation disorders. Furthermore, our data demonstrated a significant upregulation of oxidative stress in patients with ovulation disorder. Overall, our study gave a deeper insight into the mechanism of PCOS, POI, and menopause, which may contribute to the better diagnosis and treatments of these ovulatory disorder

    Differentiation Trajectory of Limbal Stem and Progenitor Cells under Normal Homeostasis and upon Corneal Wounding

    Get PDF
    Limbal stem cells (LSCs) reside discretely at limbus surrounded by niche cells and progenitor cells. The aim of this study is to identify the heterogeneous cell populations at limbus under normal homeostasis and upon wounding using single-cell RNA sequencing in a mouse model. Two putative LSC types were identified which showed a differentiation trajectory into limbal progenitor cell (LPC) types under normal homeostasis and during wound healing. They were designated as “putative active LSCs” and “putative quiescent LSCs”, respectively, because the former type actively divided upon wounding while the later type stayed at a quiescent status upon wounding. The “putative quiescent LSCs” might contribute to a barrier function due to their characteristic markers regulating vascular and epithelial barrier and growth. Different types of LPCs at different proliferative statuses were identified in unwounded and wounded corneas with distinctive markers. Four maturation markers (Aldh3, Slurp1, Tkt, and Krt12) were screened out for corneal epithelium, which showed an increased expression along the differentiation trajectory during corneal epithelial maturation. In conclusion, our study identified two different types of putative LSCs and several types of putative LPCs under normal homeostasis and upon wounding, which will facilitate the understanding of corneal epithelial regeneration and wound healing

    DNA linking number change induced by sequence-specific DNA-binding proteins

    Get PDF
    Sequence-specific DNA-binding proteins play a key role in many fundamental biological processes, such as transcription, DNA replication and recombination. Very often, these DNA-binding proteins introduce structural changes to the target DNA-binding sites including DNA bending, twisting or untwisting and wrapping, which in many cases induce a linking number change (ΔLk) to the DNA-binding site. Due to the lack of a feasible approach, ΔLk induced by sequence-specific DNA-binding proteins has not been fully explored. In this paper we successfully constructed a series of DNA plasmids that carry many tandem copies of a DNA-binding site for one sequence-specific DNA-binding protein, such as λ O, LacI, GalR, CRP and AraC. In this case, the protein-induced ΔLk was greatly amplified and can be measured experimentally. Indeed, not only were we able to simultaneously determine the protein-induced ΔLk and the DNA-binding constant for λ O and GalR, but also we demonstrated that the protein-induced ΔLk is an intrinsic property for these sequence-specific DNA-binding proteins. Our results also showed that protein-mediated DNA looping by AraC and LacI can induce a ΔLk to the plasmid DNA templates. Furthermore, we demonstrated that the protein-induced ΔLk does not correlate with the protein-induced DNA bending by the DNA-binding proteins

    Assessing Water Resources Vulnerability by Using a Rough Set Cloud Model: A Case Study of the Huai River Basin, China

    No full text
    Assessing water resources vulnerability is the foundation of local water resources management. However, as one of the major water systems in China, there is no existing evaluation index system that can effectively assess water resource vulnerability for the Huai River basin. To address this issue, we identified key vulnerability factors, constructed an evaluation index system, and applied such system to evaluate water resources vulnerability for the Huai River basin empirically in this paper. Specifically, our evaluation index system consists of 18 indexes selected from three different aspects: water shortage, water pollution, and water-related natural disaster. Then, the improved blind deletion rough set method was used to reduce the size of the evaluation index while keep the evaluation power. In addition, the improved conditional information entropy rough set method was employed to calculate the weights of evaluation indexes. Based on the reduced index system and calculated weights, a rough set cloud model was applied to carry out the vulnerability evaluation. The empirical results show that the Huai River basin water resources were under severe vulnerability conditions for most of the time between 2000 and 2016, and the Most Stringent Water Resources Management System (MS-WRMS) established in 2012 did not work effectively as expected
    corecore