315 research outputs found
A novel dynamic asset allocation system using Feature Saliency Hidden Markov models for smart beta investing
The financial crisis of 2008 generated interest in more transparent,
rules-based strategies for portfolio construction, with Smart beta strategies
emerging as a trend among institutional investors. While they perform well in
the long run, these strategies often suffer from severe short-term drawdown
(peak-to-trough decline) with fluctuating performance across cycles. To address
cyclicality and underperformance, we build a dynamic asset allocation system
using Hidden Markov Models (HMMs). We test our system across multiple
combinations of smart beta strategies and the resulting portfolios show an
improvement in risk-adjusted returns, especially on more return oriented
portfolios (up to 50 in excess of market annually). In addition, we propose
a novel smart beta allocation system based on the Feature Saliency HMM (FSHMM)
algorithm that performs feature selection simultaneously with the training of
the HMM, to improve regime identification. We evaluate our systematic trading
system with real life assets using MSCI indices; further, the results (up to
60 in excess of market annually) show model performance improvement with
respect to portfolios built using full feature HMMs
Separate Mechanisms for Audio-Tactile Pitch and Loudness Interactions
A major goal in perceptual neuroscience is to understand how signals from different sensory modalities are combined to produce stable and coherent representations. We previously investigated interactions between audition and touch, motivated by the fact that both modalities are sensitive to environmental oscillations. In our earlier study, we characterized the effect of auditory distractors on tactile frequency and intensity perception. Here, we describe the converse experiments examining the effect of tactile distractors on auditory processing. Because the two studies employ the same psychophysical paradigm, we combined their results for a comprehensive view of how auditory and tactile signals interact and how these interactions depend on the perceptual task. Together, our results show that temporal frequency representations are perceptually linked regardless of the attended modality. In contrast, audio-tactile loudness interactions depend on the attended modality: Tactile distractors influence judgments of auditory intensity, but judgments of tactile intensity are impervious to auditory distraction. Lastly, we show that audio-tactile loudness interactions depend critically on stimulus timing, while pitch interactions do not. These results reveal that auditory and tactile inputs are combined differently depending on the perceptual task. That distinct rules govern the integration of auditory and tactile signals in pitch and loudness perception implies that the two are mediated by separate neural mechanisms. These findings underscore the complexity and specificity of multisensory interactions
The Use of Gene Expression Analysis and Proteomic Databases in The Development of a Screening System To Determine The Value of Natural Medicinal Products
A rapid throughput screening system involving gene expression analysis was developed in order to investigate the potential of bioactive chemicals contained in natural health products as effective drug therapy, in particular the ability of these chemicals to alleviate the inflammatory response in human airway epithelial cells. A number of databases were searched to retrieve the information needed to properly analyze the gene expression profiles obtained. The gene expression of human bronchial epithelial cells infected with rhinovirus and/or exposed to platelet activating factor was analyzed. Following analysis of the gene expression data the total number of expressed proteins that may potentially act as a marker for monitoring the modulation of airway inflammation was narrowed to 19. Further studies will involve selecting antibodies for these proteins, culturing airway epithelial cells in the presence of extracts of natural health products, extracting the proteins and identifying them by western blot analysis
A neurocomputational analysis of visual bias on bimanual tactile spatial perception during a crossmodal exposure
Vision and touch both support spatial information processing. These sensory
systems also exhibit highly specific interactions in spatial perception, which
may reflect multisensory representations that are learned through visuotactile
(VT) experiences. Recently, Wani and colleagues reported that taskirrelevant
visual cues bias tactile perception, in a brightness-dependent
manner, on a task requiring participants to detect unimanual and bimanual
cues. Importantly, tactile performance remained spatially biased after VT
exposure, even when no visual cues were presented. These effects on
bimanual touch conceivably reflect cross-modal learning, but the neural
substrates that are changed by VT experience are unclear. We previously
described a neural network capable of simulating VT spatial interactions.
Here, we exploited this model to test different hypotheses regarding potential
network-level changes that may underlie the VT learning effects. Simulation
results indicated that VT learning effects are inconsistent with plasticity
restricted to unisensory visual and tactile hand representations. Similarly, VT
learning effects were also inconsistent with changes restricted to the strength
of inter-hemispheric inhibitory interactions. Instead, we found that both the
hand representations and the inter-hemispheric inhibitory interactions need
to be plastic to fully recapitulate VT learning effects. Our results imply that
crossmodal learning of bimanual spatial perception involves multiple changes
distributed over a VT processing cortical network
PAR2 modulators derived from GB88
PAR2 antagonists have potential for treating inflammatory, respiratory, gastrointestinal, neurological, and metabolic disorders, but few antagonists are known. Derivatives of GB88 (3) suggest that all four of its components bind at distinct PAR2 sites with the isoxazole, cyclohexylalanine, and isoleucine determining affinity and selectivity, while the C-terminal substituent determines agonist/antagonist function. Here we report structurally similar PAR2 ligands with opposing functions (agonist vs antagonist) upon binding to PAR2. A biased ligand AY117 (65) was found to antagonize calcium release induced by PAR2 agonists trypsin and hexapeptide 2f-LIGRLO-NH2 (IC50 2.2 and 0.7 mu M, HT29 cells), but it was a selective PAR2 agonist in inhibiting cAMP stimulation and activating ERK1/2 phosphorylation. It showed antiinflammatory properties both in vitro and in vivo
AMiBA Wideband Analog Correlator
A wideband analog correlator has been constructed for the Yuan-Tseh Lee Array
for Microwave Background Anisotropy. Lag correlators using analog multipliers
provide large bandwidth and moderate frequency resolution. Broadband IF
distribution, backend signal processing and control are described. Operating
conditions for optimum sensitivity and linearity are discussed. From
observations, a large effective bandwidth of around 10 GHz has been shown to
provide sufficient sensitivity for detecting cosmic microwave background
variations.Comment: 28 pages, 23 figures, ApJ in press
Antitumour activity of a potent MEK inhibitor RDEA119/BAY 869766 combined with rapamycin in human orthotopic primary pancreatic cancer xenografts
<p>Abstract</p> <p>Background</p> <p>Combining MEK inhibitors with other signalling pathway inhibitors or conventional cytotoxic drugs represents a promising new strategy against cancer. RDEA119/BAY 869766 is a highly potent and selective MEK1/2 inhibitor undergoing phase I human clinical trials. The effects of RDEA119/BAY 869766 as a single agent and in combination with rapamycin were studied in 3 early passage primary pancreatic cancer xenografts, OCIP19, 21, and 23, grown orthotopically.</p> <p>Methods</p> <p>Anti-cancer effects were determined in separate groups following chronic drug exposure. Effects on cell cycle and downstream signalling were examined by flow cytometry and western blot, respectively. Plasma RDEA119 concentrations were measured to monitor the drug accumulation <it>in vivo</it>.</p> <p>Results</p> <p>RDEA119/BAY 869766 alone or in combination with rapamycin showed significant growth inhibition in all the 3 models, with a significant decrease in the percentage of cells in S-phase, accompanied by a large decrease in bromodeoxyuridine labelling and cell cycle arrest predominantly in G1. The S6 ribosomal protein was inhibited to a greater extent with combination treatment in all the three models. Blood plasma pharmacokinetic analyses indicated that RDEA119 levels achieved <it>in vivo </it>are similar to those that produce target inhibition and cell cycle arrest <it>in vitro</it>.</p> <p>Conclusions</p> <p>Agents targeting the ERK and mTOR pathway have anticancer activity in primary xenografts, and these results support testing this combination in pancreatic cancer patients.</p
The Yuan-Tseh Lee Array for Microwave Background Anisotropy
The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is the
first interferometer dedicated to studying the cosmic microwave background
(CMB) radiation at 3mm wavelength. The choice of 3mm was made to minimize the
contributions from foreground synchrotron radiation and Galactic dust emission.
The initial configuration of seven 0.6m telescopes mounted on a 6-m hexapod
platform was dedicated in October 2006 on Mauna Loa, Hawaii. Scientific
operations began with the detection of a number of clusters of galaxies via the
thermal Sunyaev-Zel'dovich effect. We compare our data with Subaru weak lensing
data in order to study the structure of dark matter. We also compare our data
with X-ray data in order to derive the Hubble constant.Comment: accepted for publication in ApJ (13 pages, 7 figures); a version with
high resolution figures available at
http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/pho_highreso.pd
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
- …