129 research outputs found

    An All-Solid-State Phosphate Electrode with H3PO4 Doped Polyaniline as the Sensitive Layer

    Get PDF
    We here describe the construction of a highly sensitive and selective all-solid-state phosphate electrode based on polyaniline and H3PO4 doped polyaniline. The polyaniline layer was electroplated on the gold substrate with Chronoamperometry method and was in-situ doped by H3PO4. The Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM, EDS) and contact angle measurement was taken to explain the difference of the two layers. This electrode can be used in both freshwater and seawater systems. In both of the two systems, the electrode exhibits linear response in the concentration range 10-1 to 10-6 M with detection limit of 10-6 M. and response time of <1 seconds. The selectivity of the electrodes was also studied in 10-1-10-5 M KH2PO4 solutions containing either 0.01 M sulfate, nitrate, chloride as the interference ions. During 12 hours continuous monitoring in 10-3 M KH2PO4 with 3.5% NaCl the potential drift was 0.05 mV/h and the lifetime of the electrode was over 40 days when preserved in this solutionpublishersversionPeer reviewe

    Loss-of-function mutations with circadian rhythm regulator Per1/Per2 lead to premature ovarian insufficiency

    Get PDF
    The mechanism underlying premature ovarian insufficiency remains incompletely understood. Here we report that mice with Per1m/m; Per2m/m double mutations display a decrease in female fertility starting approximately at 20 weeks old, with significantly less pups born from 32 weeks old onwards. Histological analysis revealed that a significant reduction of ovarian follicles was observed in the Per1/Per2 mutants compared with the littermate controls examined at 26 and 52 weeks old, while the difference was not statistically significant between the two groups at 3 and 8 weeks old. We further showed that vascular development including the ovarian follicle associated vascular growth appeared normal in the Per1/Per2 mutant mice, although clock genes were reported to regulate angiogenesis in zebrafish. The findings imply that loss-of-function mutations with Per1/Per2 result in a premature depletion of ovarian follicle reserve leading to the decline of reproductive capacity.Peer reviewe

    The Local Brain Abnormalities in Patients With Transient Ischemic Attack: A Resting-State fMRI Study

    Get PDF
    Background: Transient ischemic attack (TIA) is an important risk factor for stroke. Despite the transient episodes of clinical symptoms, brain alterations are still observed in patients with TIA. However, the functional mechanism of transient ischemia is still unclear. Here, we employed resting-state functional magnetic resonance imaging (rs-fMRI) to explore the functional abnormalities in patients with TIA.Methods: 48 TIA patients and 41 age- and sex-matched healthy controls (HCs) were enrolled in the study. For each participant, we collected rs-fMRI data and clinical/physiological/biochemical data. Amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality (DC) were then calculated. Two sample t-tests were performed to compare the ALFF, ReHo, and DC maps between the two groups. Furthermore, a correlation analysis was performed to explore the relationship between local brain abnormalities and clinical/physiological/biochemical characteristics tests in TIA patients.Results: Compared with the HCs, the TIA patients exhibited decreased ALFF in the left middle temporal gyrus, decreased DC in the triangular part of right inferior frontal gyrus, and no significant statistical difference in ReHo. No correlation was found between local abnormalities and clinical/physiological/biochemical scores in the patients with TIA.Conclusion: Collectively, we found decreased ALFF and DC in patients with TIA which provide evidence for local brain dysfunctions and may help to understand the pathological mechanism for the disease

    Neuropathic Injury-Induced Plasticity of GABAergic System in Peripheral Sensory Ganglia

    Get PDF
    GABA is a major inhibitory neurotransmitter in the mammalian central nervous system (CNS). Inhibitory GABAA channel circuits in the dorsal spinal cord are the gatekeepers of the nociceptive input from the periphery to the CNS. Weakening of these spinal inhibitory mechanisms is a hallmark of chronic pain. Yet, recent studies have suggested the existence of an earlier GABAergic “gate” within the peripheral sensory ganglia. In this study, we performed systematic investigation of plastic changes of the GABA-related proteins in the dorsal root ganglion (DRG) in the process of neuropathic pain development. We found that chronic constriction injury (CCI) induced general downregulation of most GABAA channel subunits and the GABA-producing enzyme, glutamate decarboxylase, consistent with the weakening of the GABAergic inhibition at the periphery. Strikingly, the α5 GABAA subunit was consistently upregulated. Knock-down of the α5 subunit in vivo moderately alleviated neuropathic hyperalgesia. Our findings suggest that while the development of neuropathic pain is generally accompanied by weakening of the peripheral GABAergic system, the α5 GABAA subunit may have a unique pro-algesic role and, hence, might represent a new therapeutic target

    Engineering oxygen vacancies in hierarchically Li-rich layered oxide porous microspheres for high-rate lithium ion battery cathode

    Get PDF
    Abstract(#br)Lithium-rich layered oxides always suffer from low initial Coulombic efficiency, poor rate capability and rapid voltage fading. Herein, engineering oxygen vacancies in hierarchically Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 porous microspheres (L@S) is carried out to suppress the formation of irreversible Li 2 O during the initial discharge process and improve the Li + diffusion kinetics and structural stability of the cathode mateiral. As a result, the prepared L@S cathode delivers high initial Coulombic efficiency of 92.3% and large specific capacity of 292.6 mA h g −1 at 0.1 C. More importantly, a large reversible capacity of 222 mA h g −1 with a capacity retention of 95.7% can be obtained after 100 cycles at 10 C. Even cycled at ultrahigh rate of 20 C, the L@S cathode can..

    The transmembrane channel-like 6 (TMC6) in primary sensory neurons involving thermal sensation via modulating M channels

    Get PDF
    Introduction: The transmembrane channel-like (TMC) protein family contains eight members, TMC1–TMC8. Among these members, only TMC1 and TMC2 have been intensively studied. They are expressed in cochlear hair cells and are crucial for auditory sensations. TMC6 and TMC8 contribute to epidermodysplasia verruciformis, and predispose individuals to human papilloma virus. However, the impact of TMC on peripheral sensation pain has not been previously investigated.Methods: RNAscope was employed to detect the distribution of TMC6 mRNA in DRG neurons. Electrophysiological recordings were conducted to investigate the effects of TMC6 on neuronal characteristics and M channel activity. Zn2+ indicators were utilized to detect the zinc concentration in DRG tissues and dissociated neurons. A series of behavioural tests were performed to assess thermal and mechanical sensation in mice under both physiological and pathological conditions.Results and Discussion: We demonstrated that TMC6 is mainly expressed in small and medium dorsal root ganglion (DRG) neurons and is involved in peripheral heat nociception. Deletion of TMC6 in DRG neurons hyperpolarizes the resting membrane potential and inhibits neuronal excitability. Additionally, the function of the M channel is enhanced in TMC6 deletion DRG neurons owing to the increased quantity of free zinc in neurons. Indeed, heat and mechanical hyperalgesia in chronic pain are alleviated in TMC6 knockout mice, particularly in the case of heat hyperalgesia. This suggests that TMC6 in the small and medium DRG neurons may be a potential target for chronic pain treatment
    • 

    corecore