3 research outputs found

    Anti-thrombotic treatment enhances antibiotic efficiency in a humanized model of meningococcemia

    No full text
    Meningococcal infections remain particularly difficult to treat. Despite antibiotic therapy, the state of the patients often rapidly deteriorates. Early clinical studies suggest that meningococci acquire a form of resistance to antibiotic treatments during infections. Taking advantage of a humanized animal model of infection, we confirm that adherent bacteria become highly resistant to antibiotic treatments as early as 3-6 hours post infection, although fully sensitive in vitro . Within this time frame, meningococci adhere to the endothelium via their type IV pili, proliferate and eventually fill the vessel lumen. Using intravital imaging, we show that rapidly upon infection blood flow is dramatically decreased, thus limiting antibiotic access to infected vessels. Concomitantly, fibrin is deposited inside infected vessels in proximity to bacterial aggregates. Pharmacologically impairing thrombin generation by inhibiting Factor X activity not only improves blood flow in infected vessels, but also enhances the efficacy of the antibiotic treatment. Our results indicate that the combined administration of anticoagulants together with antibiotics might represent a therapeutic approach to treat meningococcal sepsis more efficiently

    A Shape Sensing Mechanism driven by Arp2/3 and cPLA 2 licenses Dendritic Cells for Migration to Lymph Nodes in Homeostasis

    No full text
    Motile cells such as immune and cancer cells experience large deformation events that result from the physical constraints they encounter while migrating within tissues or circulating between organs. It has become increasingly clear that these cells can survive and adapt to these changes in cell shape using dedicated shape sensing pathways. However, how shape sensing impacts their function and fate remains largely unknown. Here we identify a shape sensing mechanism that couples cell motility to expression of CCR7, the chemokine receptor that guides immune cells to lymph nodes. We found that this mechanism is controlled by the lipid metabolism enzyme cPLA 2 , requires an intact nuclear envelop and exhibits an exquisitely sensitive activation threshold tuned by ARP2/3 and its inhibitor Arpin. We further show that shape sensing through the ARP2/3-cPLA 2 axis controls Ikkβ-NFκB-dependent transcriptional reprogramming of dendritic cells, which instructs them to migrate to lymph nodes in an immunoregulatory state compatible with their homeostatic tolerogenic function. These results highlight that the cell shape changes experienced by motile cells evolving within the complex environment of tissues can dictate their behavior and fate

    Inborn errors of OAS–RNase L in SARS-CoV-2–related multisystem inflammatory syndrome in children

    No full text
    International audienceMultisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1 , OAS2 , or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)–sensing OAS1 and OAS2 generate 2′-5′-linked oligoadenylates (2-5A) that activate the single-stranded RNA–degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L–deficient cells. Cytokine production in RNase L–deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS–RNase L deficiencies in these patients unleash the production of SARS-CoV-2–triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C
    corecore