485 research outputs found
Perturbations of Spatially Closed Bianchi III Spacetimes
Motivated by the recent interest in dynamical properties of topologically
nontrivial spacetimes, we study linear perturbations of spatially closed
Bianchi III vacuum spacetimes, whose spatial topology is the direct product of
a higher genus surface and the circle. We first develop necessary mode
functions, vectors, and tensors, and then perform separations of (perturbation)
variables. The perturbation equations decouple in a way that is similar to but
a generalization of those of the Regge--Wheeler spherically symmetric case. We
further achieve a decoupling of each set of perturbation equations into
gauge-dependent and independent parts, by which we obtain wave equations for
the gauge-invariant variables. We then discuss choices of gauge and stability
properties. Details of the compactification of Bianchi III manifolds and
spacetimes are presented in an appendix. In the other appendices we study
scalar field and electromagnetic equations on the same background to compare
asymptotic properties.Comment: 61 pages, 1 figure, final version with minor corrections, to appear
in Class. Quant. Gravi
13th Meeting of the Scientific Group on Methodologies for the Safety Evaluation of Chemicals (SGOMSEC): alternative testing methodologies for ecotoxicity.
There is growing public pressure to minimize the use of vertebrates in ecotoxicity testing; therefore, effective alternatives to toxicity tests causing suffering are being sought. This report discusses alternatives and differs in some respects from the reports of the other three groups because the primary concern is with harmful effects of chemicals at the level of population and above rather than with harmful effects upon individuals. It is concluded that progress toward the objective of minimizing testing that causes suffering would be served by the following initiatives--a clearer definition of goals and strategies when undertaking testing procedures; development of alternative assays, including in vitro test systems, that are based on new technology; development of nondestructive assays for vertebrates (e.g., biomarkers) that do not cause suffering; selection of most appropriate species, strains, and developmental stages for testing procedures (but no additional species for basic testing); better integrated and more flexible testing procedures incorporating biomarker responses, ecophysiological concepts, and ecological end points (progress in this direction depends upon expert judgment). In general, testing procedures could be made more realistic, taking into account problems with mixtures, and with volatile or insoluble chemicals
Performance Evaluation of Energy Harvesting Method on Intelligent Wearable Travel Aid Device for Blind Person
The intelligent wearable travel aid device has been developed for blind person usage for traveling purposes. The intelligent wearable travel aid device will be used along with the long cane that is usually used to detect any obstructions around the blind person. However, the problem on power supply to supply the electrical energy for the intelligent wearable travel aid device to work properly always been occurred. In order to fit the energy harvesting device on the intelligent wearable travel aid device, the comparison of the solar panel and photodiode is done. The performance evaluation to compare theenergy harvesting method on the developed intelligent wearable travel aid device for blind person has been conductedbased on the experiment result. The photodiode is proposed in this study due to small size and easy to arrange on top of developed wearable travel aid device compared to the solar panel which big size but commonly used as energy harvesting device. Consequently, the experimental result of the intelligent wearable travel aid device in terms of voltage, current and light intensity for the improved version with different type of configuration is proven respectively
Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control
We present a full-range Fourier-domain optical coherence tomography (OCT) system that is capable of acquiring two-dimensional images of living tissue in a single shot. By using line illumination of the sample in combination with a two-dimensional imaging spectrometer, 1040 depth scans are performed simultaneously on a sub-millisecond timescale. Furthermore, we demonstrate an easy and flexible real-time single-shot technique for full-range (complex-conjugate cancelled) OCT imaging that is compatible with both two-dimensional as well as ultrahighresolution OCT. By implementing a dispersion imbalance between reference and sample arms of the interferometer, we eliminate the complex-conjugate signal through numerical dispersion compensation, effectively increasing the useful depth range by a factor of two. The system allows us to record 6.7 × 3.2 mm images at 5 μm depth resolution in 0.2 ms. Data postprocessing requires only 4 s. We demonstrate the capability of our system by imaging the anterior chamber of a mouse eye in vitro, as well as human skin in vivo. © 2009 Optical Society of America
Multidimensional en-face OCT imaging of the retina.
Fast T-scanning (transverse scanning, en-face) was used to build B-scan or C-scan optical coherence tomography (OCT) images of the retina. Several unique signature patterns of en-face (coronal) are reviewed in conjunction with associated confocal images of the fundus and B-scan OCT images. Benefits in combining T-scan OCT with confocal imaging to generate pairs of OCT and confocal images similar to those generated by scanning laser ophthalmoscopy (SLO) are discussed in comparison with the spectral OCT systems. The multichannel potential of the OCT/SLO system is demonstrated with the addition of a third hardware channel which acquires and generates indocyanine green (ICG) fluorescence images. The OCT, confocal SLO and ICG fluorescence images are simultaneously presented in a two or a three screen format. A fourth channel which displays a live mix of frames of the ICG sequence superimposed on the corresponding coronal OCT slices for immediate multidimensional comparison, is also included. OSA ISP software is employed to illustrate the synergy between the simultaneously provided perspectives. This synergy promotes interpretation of information by enhancing diagnostic comparisons and facilitates internal correction of movement artifacts within C-scan and B-scan OCT images using information provided by the SLO channel
Using 3D Stringy Gravity to Understand the Thurston Conjecture
We present a string inspired 3D Euclidean field theory as the starting point
for a modified Ricci flow analysis of the Thurston conjecture. In addition to
the metric, the theory contains a dilaton, an antisymmetric tensor field and a
Maxwell-Chern Simons field. For constant dilaton, the theory appears to obey a
Birkhoff theorem which allows only nine possible classes of solutions,
depending on the signs of the parameters in the action. Eight of these
correspond to the eight Thurston geometries, while the ninth describes the
metric of a squashed three sphere. It therefore appears that one can construct
modified Ricci flow equations in which the topology of the geometry is encoded
in the parameters of an underlying field theory.Comment: 17 pages, Late
Knockout studies reveal an important role of <i>plasmodium</i> lipoic acid protein ligase a1 for asexual blood stage parasite survival
Lipoic acid (LA) is a dithiol-containing cofactor that is essential for the function of a-keto acid dehydrogenase complexes. LA acts as a reversible acyl group acceptor and 'swinging arm' during acyl-coenzyme A formation. The cofactor is post-translationally attached to the acyl-transferase subunits of the multienzyme complexes through the action of octanoyl (lipoyl): <i>N</i>-octanoyl (lipoyl) transferase (LipB) or lipoic acid protein ligases (LplA). Remarkably, apicomplexan parasites possess LA biosynthesis as well as scavenging pathways and the two pathways are distributed between mitochondrion and a vestigial organelle, the apicoplast. The apicoplast-specific LipB is dispensable for parasite growth due to functional redundancy of the parasite's lipoic acid/octanoic acid ligases/transferases. In this study, we show that <i>LplA1</i> plays a pivotal role during the development of the erythrocytic stages of the malaria parasite. Gene disruptions in the human malaria parasite <i>P.falciparum</i> consistently were unsuccessful while in the rodent malaria model parasite <i>P. berghei</i> the <i>LplA1</i> gene locus was targeted by knock-in and knockout constructs. However, the <i>LplA1</i> <sup>(-)</sup> mutant could not be cloned suggesting a critical role of LplA1 for asexual parasite growth <i>in vitro</i> and <i>in vivo</i>. These experimental genetics data suggest that lipoylation during expansion in red blood cells largely occurs through salvage from the host erythrocytes and subsequent ligation of LA to the target proteins of the malaria parasite
An international validation study of the IL-2 Luc assay for evaluating the potential immunotoxic effects of chemicals on T cells and a proposal for reference data for immunotoxic chemicals
To evaluate the immunotoxic effects of xenobiotics, we have established the Multi-ImmunoTox assay, in which three stable reporter cell lines are used to evaluate the effects of chemicals on the IL-2, IFN-\u3b3, IL-1\u3b2 and IL-8 promoters. Here, we report the official validation study of the IL-2 luciferase assay (IL-2 Luc assay). In the Phase I study that evaluated five coded chemicals in three sets of experiments, the average within-laboratory reproducibility was 86.7%. In the Phase II study, 20 coded chemicals were evaluated at multiple laboratories. In the combined results of the Phase I and II studies, the between-laboratory reproducibility was 80.0%. These results suggested that the IL-2 Luc assay was reproducible both between and within laboratories. To determine the predictivity, we collected immunotoxicological information and constructed the reference data by classifying the chemical into immunotoxic compounds targeting T cells or others according to previously reported criteria. When compared with the reference data, the average predictivity of the Phase I and II studies was 75.0%, while that of additional 60 chemicals examined by the lead laboratory was 82.5%. Although the IL-2 Luc assay alone is not sufficient to predict immunotoxicity, it will be a useful tool when combined with other immune tests
Thurston Geometries from Eleven Dimensions
In three dimensions, a `master theory' for all Thurston geometries requires
imaginary flux. However, these geometries can be obtained from physical
three-dimensional theories with various additional scalar fields, which can be
interpreted as moduli in various compactifications of a higher-dimensional
`master theory'. Three Thurston geometries are of the form N_2 x S^1, where N_2
denotes a two-dimensional Riemannian space of constant curvature. This enables
us to twist these spaces, via T-duality, into other Thurston geometries as a
U(1) bundle over N_2. In this way, Hopf T-duality relates all but one of the
geometries in the higher-dimensional M-theoretic framework. The exception is
the `Sol geometry,' which results from the dimensional reduction of the
decoupling limit of the D3-brane in a background B-field.Comment: Latex, 8 pages, improved presentation in abstract, introduction and
section 2, references adde
- …