205 research outputs found

    Neutral wind control of the jovian magnetosphere-ionosphere current system

    Get PDF
    [1] In order to clarify the role of neutral dynamics in the Jovian magnetosphere-ionosphere-thermosphere coupling system, we have developed a new numerical model that includes the effect of neutral dynamics on the coupling current. The model calculates axisymmetric thermospheric dynamics and ion composition by considering fundamental physical and chemical processes. The ionospheric Pedersen current is obtained from the thermospheric and ionospheric parameters. The model simultaneously solves the torque equations of the magnetospheric plasma due to radial currents flowing at the magnetospheric equator, which enables us to update the electric field projected onto the ionosphere and the field-aligned currents (FACs) depending upon the thermospheric dynamics. The self-consistently calculated temperature and ion velocity are consistent with observations. The estimated neutral wind field captures the zonally averaged characteristics in previous three-dimensional models. The energy extracted from the planetary rotation is mainly used for magnetospheric plasma acceleration below 73.5°latitude while consumed in the upper atmosphere, mainly by Joule heating at above 73.5°latitude. The neutral wind dynamics contributes to a reduction in the electric field of 22% compared with the case of neutral rigid corotation. About 90% of this reduction is attributable to neutral winds below the 550-km altitude in the auroral region. The calculated radial current in the equatorial magnetosphere is smaller than observations. This indicates that the enhancement of the background conductance and/or the additional radial current at the outer boundary would be expected to reproduce the observed current. Citation: Tao, C., H. Fujiwara, and Y. Kasaba (2009), Neutral wind control of the Jovian magnetosphere-ionosphere current system

    Modeling infrared thermal emissions on Mars during dust storm of MY28: PFS/MEX observation

    Get PDF
    We have analysed thermal emission spectra obtained from Planetary Fourier Spectrometer (PFS) onboard Mars Express (MEX) for Martian Year (MY) 28 in presence and absence of dust storm at low latitude. A radiative transfer model for dusty atmosphere of Mars is developed to estimate the thermal emission spectra at latitude range 0-10oS, 10-20oS and 20-30oS. These calculations are made at Ls=240o, 280o, 300o, and 320o between wave numbers 250-1400 cm-1. We have also retrieved brightness temperatures from thermal emission spectra by inverting the Planck function. The model reproduces the observed features at wave numbers 600-750 cm-1 and 900-1200 cm-1 due to absorptions by CO2 and dust respectively. In presence of dust storm thermal emission spectra and brightness temperature are reduced by a factor of ~ 2 between wave numbers 900-1200 cm-1. The altitude profiles of dust concentration are also estimated for different aerosol particles of sizes 0.2 to 3 micron. The best fit to the PFS measurements is obtained in presence of aerosol particle of size 0.2 micron

    Discovery of proton hill in the phase space during interactions between ions and electromagnetic ion cyclotron waves

    Get PDF
    宇宙空間で電波を生み出す陽子の集団を発見 --JAXAの人工衛星「あらせ」の観測と解析から--. 京都大学プレスリリース. 2021-07-12.A study using Arase data gives the first observational evidence that the frequency drift of electromagnetic ion cyclotron (EMIC) waves is caused by cyclotron trapping. EMIC emissions play an important role in planetary magnetospheres, causing scattering loss of radiation belt relativistic electrons and energetic protons. EMIC waves frequently show nonlinear signatures that include frequency drift and amplitude enhancements. While nonlinear growth theory has suggested that the frequency change is caused by nonlinear resonant currents owing to cyclotron trapping of the particles, observational evidence for this has been elusive. We survey the wave data observed by Arase from March, 2017 to September 2019, and find the best falling tone emission event, one detected on 11th November, 2017, for the wave particle interaction analysis. Here, we show for the first time direct evidence of the formation of a proton hill in phase space indicating cyclotron trapping. The associated resonance currents and the wave growth of a falling tone EMIC wave are observed coincident with the hill, as theoretically predicted

    Seasonal variation of the HDO/H2O ratio in the atmosphere of Mars at the middle of northern spring and beginning of northern summer

    Get PDF
    We present the seasonal variation of the HDO/H2O ratio caused by sublimation-condensation processes in a global view of the martian water cycle. The HDO/H2O ratio was retrieved from ground-based observations using high-dispersion echelle spectroscopy of the Infrared Camera and Spectrograph (IRCS) of the Subaru telescope. Coordinated joint observations were made by the Planetary Fourier Spectrometer (PFS) onboard Mars Express (MEX). The observations were performed during the middle of northern spring (Ls = 52°) and at the beginning of summer (Ls = 96°) in Mars Year 31. The retrieved latitudinal mean HDO/H2O ratios are 4.1 ± 1.4 (Ls = 52°) and 4.4 ± 1.0 (Ls = 96°) times larger than the terrestrial Vienna Standard Mean Ocean Water (VSMOW). The HDO/H2O ratio shows a large seasonal variation at high latitudes. The HDO/H2O ratio significantly increases from 2.4 ± 0.6 wrt VSMOW at Ls = 52° to 5.5 ± 1.1 wrt VSMOW at Ls = 96° over the latitude range between 70°N and 80°N. This can be explained by preferential condensation of HDO vapor during the northern fall, winter, and spring and sublimation of the seasonal polar cap in the northern summer. In addition, we investigated the geographical distribution of the HDO/H2O ratio over low latitudes at the northern spring in the longitudinal range between 220°W and 360°W, including different local times from 10 h to 17 h. We found the HDO/H2O ratio has no significant variation (5.1 ± 1.2 wrt VSMOW) over the entire range. Our observations suggest that the HDO/H2O distribution in the northern spring and summer seasons is mainly controlled by condensation-induced fractionation between the seasonal northern polar cap and the atmosphere

    Search for hydrogen peroxide in the Martian atmosphere by the Planetary Fourier Spectrometer onboard Mars Express

    Get PDF
    We searched for hydrogen peroxide (H2O2) in the Martian atmosphere using data measured by the Planetary Fourier Spectrometer (PFS) onboard Mars Express during five martian years (MY27-31). It is well known that H2O2 plays a key role in the oxidizing capacity of the Martian atmosphere. However, only a few studies based on ground-based observations can be found in the literature. Here, we performed the first analysis of H2O2 using long-term measurements by a spacecraft-borne instrument. We used the ν4 band of H2O2 in the spectral range between 359 cm-1 and 382 cm-1 where strong features of H2O2 are present around 362 cm-1 and 379 cm-1. Since the features were expected to be very weak even at the strong band, sensitive data calibrations were performed and a large number of spectra were selected and averaged. We made three averaged spectra for different seasons over relatively low latitudes (50°S-50°N). We found features of H2O2 at 379 cm-1, whereas no clear features were detected at 362 cm-1 due to large amounts of uncertainty in the data. The derived mixing ratios of H2O2 were close to the detection limits: 16 ± 19 ppb at Ls = 0-120°, 35 ± 32 ppb at Ls = 120-240°, and 41 ± 28 ppb at Ls = 240-360°. The retrieved value showed the detection of H2O2 only for the third seasonal period, and the values in the other periods provided the upper limits. These long-term averaged abundances derived by the PFS generally agreed with the ones reported by ground-based observations. From our derived mixing ratio of H2O2, the lifetime of CH4 in the Martian atmosphere is estimated to be several decades in the shortest case. Our results and sporadic detections of CH4 suggest the presence of strong CH4 sinks not subject to atmospheric oxidation. <P /

    Mesospheric CO2 ice clouds on Mars observed by Planetary Fourier Spectrometer onboard Mars Express

    Get PDF
    We investigate mesospheric CO2 ice clouds on Mars detected by the Planetary Fourier Spectrometer (PFS) onboard Mars Express (MEx). The relatively high spectral resolution of PFS allows firm identification of the clouds' reflection spike. A total of 279 occurrences of the CO2 ice clouds features has been detected at the bottom of 4.3 μm CO2 band from the MEx/PFS data during the period from MY27 to MY32. 115 occurrences out of them are also confirmed by simultaneous observations by MEx/OMEGA imaging spectrometer. The spatial and seasonal distributions of the CO2 ice clouds observed by PFS are consistent with the previous studies: the CO2 ice clouds are only observed between Ls=0° and 140° at distinct longitudinal corridors around the equatorial region (±20°N). The CO2 ice clouds are preferentially detected at local time between 15-17h. The relatively high spectral resolution of PFS allows us to investigate the spectral shape of the CO2 ice clouds features. The CO2 ice clouds reflection spike is peaked between 4.24 and 4.29 μm, with no evidence of the secondary peak at 4.32-4.34 μm observed by MEx/OMEGA (Määttänen et al., 2010). In most of the cases (about 75%), the peak is present between 4.245 and 4.255 μm. Moreover, small secondary peaks are found around 4.28 μm (about 15 occurrences). These spectral features cannot be reproduced by the synthetic spectra with the assumption of a spherical particle shape in our radiative transfer model (DISORT). This can be due to the fact that the available CO2 ice reflective indexes are either inaccurate or inappropriate for the mesospheric temperatures, or that the particle shape is not spherical. Accurate measurements of the reflective index depending on temperature and detailed comparison with the model taking into account non-spherical shapes will give a clue to solve this issue

    Saturn's Seasonal Variability from Four Decades of Ground-Based Mid-Infrared Observations

    Full text link
    A multi-decade record of ground-based mid-infrared (7-25 μ\mum) images of Saturn is used to explore seasonal and non-seasonal variability in thermal emission over more than a Saturnian year (1984-2022). Thermal emission measured by 3-m and 8-m-class observatories compares favourably with synthetic images based on both Cassini-derived temperature records and the predictions of radiative climate models. 8-m class facilities are capable of resolving thermal contrasts on the scale of Saturn's belts, zones, polar hexagon, and polar cyclones, superimposed onto large-scale seasonal asymmetries. Seasonal changes in brightness temperatures of 30\sim30 K in the stratosphere and 10\sim10 K in the upper troposphere are observed, as the northern and southern polar stratospheric vortices (NPSV and SPSV) form in spring and dissipate in autumn. The timings of the first appearance of the warm polar vortices is successfully reproduced by radiative climate models, confirming them to be radiative phenomena, albeit entrained within sharp boundaries influenced by dynamics. Axisymmetric thermal bands (4-5 per hemisphere) display temperature gradients that are strongly correlated with Saturn's zonal winds, indicating winds that decay in strength with altitude, and implying meridional circulation cells forming the system of cool zones and warm belts. Saturn's thermal structure is largely repeatable from year to year (via comparison of infrared images in 1989 and 2018), with the exception of low-latitudes. Here we find evidence of inter-annual variations because the equatorial banding at 7.9 μ\mum is inconsistent with a 15\sim15-year period for Saturn's equatorial stratospheric oscillation, i.e., it is not strictly semi-annual. Finally, observations between 2017-2022 extend the legacy of the Cassini mission, revealing the continued warming of the NPSV during northern summer. [Abr.]Comment: 25 pages, 15 figures, accepted for publication in Icaru

    Variation of Jupiter's Aurora Observed by Hisaki/EXCEED: 3. Volcanic Control of Jupiter's Aurora:Io's Volcanic Effect on Jovian Aurora

    Get PDF
    Temporal variation of Jupiter's northern aurora during enhanced Io volcanic activity was detected using the EXCEED spectrometer on board the Hisaki Earth-orbiting planetary space telescope. It was found that in association with reported Io volcanic events in early 2015, auroral power and estimated field-aligned currents were enhanced during day of year 40–120. Furthermore, the far ultraviolet color ratio decreased during the event, indicating a decrease of auroral electron mean energy and total acceleration by <30%. During the episode of enhanced Io volcanic activity, Jupiter's magnetosphere contains more source current via increased suprathermal plasma density by up to 42%; therefore, it would have required correspondingly less electron acceleration to maintain the enhanced field-aligned current and corotation enforcement current. Sporadic large enhancements in auroral emission detected more frequently during the active period could have been contributed by nonadiabatic magnetospheric energization

    Active auroral arc powered by accelerated electrons from very high altitudes

    Get PDF
    オーロラ粒子の加速領域が超高高度まで広がっていたことを解明 -オーロラ粒子の加速の定説を覆す発見-. 京都大学プレスリリース. 2021-01-20.Bright, discrete, thin auroral arcs are a typical form of auroras in nightside polar regions. Their light is produced by magnetospheric electrons, accelerated downward to obtain energies of several kilo electron volts by a quasi-static electric field. These electrons collide with and excite thermosphere atoms to higher energy states at altitude of ~ 100 km; relaxation from these states produces the auroral light. The electric potential accelerating the aurora-producing electrons has been reported to lie immediately above the ionosphere, at a few altitudes of thousand kilometres1. However, the highest altitude at which the precipitating electron is accelerated by the parallel potential drop is still unclear. Here, we show that active auroral arcs are powered by electrons accelerated at altitudes reaching greater than 30, 000 km. We employ high-angular resolution electron observations achieved by the Arase satellite in the magnetosphere and optical observations of the aurora from a ground-based all-sky imager. Our observations of electron properties and dynamics resemble those of electron potential acceleration reported from low-altitude satellites except that the acceleration region is much higher than previously assumed. This shows that the dominant auroral acceleration region can extend far above a few thousand kilometres, well within the magnetospheric plasma proper, suggesting formation of the acceleration region by some unknown magnetospheric mechanisms
    corecore