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Abstract Temporal variation of Jupiter's northern aurora during enhanced lo volcanic activity was
detected using the EXCEED spectrometer on board the Hisaki Earth-orbiting planetary space telescope. It
was found that in association with reported lo volcanic events in early 2015, auroral power and estimated
field-aligned currents were enhanced during day of year 40-120. Furthermore, the far ultraviolet color ratio
decreased during the event, indicating a decrease of auroral electron mean energy and total acceleration by
<30%. During the episode of enhanced lo volcanic activity, Jupiter's magnetosphere contains more source
current via increased suprathermal plasma density by up to 42%; therefore, it would have required
correspondingly less electron acceleration to maintain the enhanced field-aligned current and corotation
enforcement current. Sporadic large enhancements in auroral emission detected more frequently during the
active period could have been contributed by nonadiabatic magnetospheric energization.

1. Introduction

The Jovian magnetosphere is characterized by a plasma supply of up to ~1 t s™" from its volcanically active
moon, lo. Despite the initial radial transport of the plasma, its rotational motion around Jupiter is maintained
by the transfer of angular momentum from the planetary atmosphere (e.g., Hill, 1979). Jupiter's main aurora is
considered to be produced by the angular momentum transfer carried by the field-aligned current (e.g.,
Cowley & Bunce, 2001; Hill, 2001).

The level of volcanic activity of lo can change dramatically; the subsequent enhancement in the emission of
the lo plasma torus (IPT) can persist for a few days to a period of several months. In association with the vol-
canic activation in May 2007 detected via brightening of the sodium nebula observation by Yoneda, Kagitani,
and Okano (2009), an auroral image after the enhancement showed an equatorward shift of the main aurora
and an increase in the occurrence of very bright enhancement >600 GW at lower latitudes (Bonfond et al.,
2011). On the other hand, the activity of aurora-related hectometric radio emission was reduced (Yoneda
et al, 2013). As momentum transfer is supposed to occur efficiently over a more limited radial distance of
the equatorial magnetosphere for the increased plasma case, theoretical models predict that the main aurora
would be located at lower latitudes for the case of increased lo plasma mass loading (Nichols, 2011; Nichols &
Cowley, 2005; Tao, Fujiwara, & Kasaba, 2010). Nichols (2011) suggested that the field-aligned current, that is,
intensity of the main auroral emission, would increase or decrease when variation in plasma production
occurs with or without the modification of the background plasma density, respectively. In order to associate
these different features of the aurora (i.e,, auroral intensity and particle acceleration) with the resultant
auroral electron energy, continuous auroral spectral observation is required.

This monitoring can be achieved by JAXA’s Hisaki Earth-orbiting space telescope. The EXCEED (Extreme
Ultraviolet Spectroscope for Exospheric Dynamics) spectrometer on board Hisaki monitors emissions from
both the IPT and Jupiter’s northern aurora simultaneously (Yamazaki et al.,, 2014; Yoshikawa et al., 2014;
Yoshioka et al., 2013). Ground-based monitoring of the sodium line from Jupiter magnetosphere showed
enhancement and radial extension on the eastern side starting from 10 January 2015 (day of year (DOY)
10) (Yoneda et al., 2015). Infrared imaging of lo’s surface detected a sudden brightness enhancement at
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Kurdalagon Patera on 26 January (de Kleer & de Pater, 2016). The intensity of emission from the sodium neu-
tral cloud subsequently increased by almost a factor of 4 by the middle of February before decreasing in April.
This emission enhancement is actually weak compared to typical events (Yoneda et al., 2015). This variation in
neutral sodium emission was followed by enhancements of IPT S* (increase from DOY 20 and decrease dur-
ing DOY ~60-90), $** (increase from DOY ~30 and decrease during DOY 70-110), and $3* lines (increase from
DOY ~40 and decrease from DOY 90) detected by EXCEED (Tsuchiya et al., 2017MOP, Yoshikawa et al., 2017).
EXCEED cannot resolve auroral structure due to its moderate spatial resolution (~1 Ry around Jupiter’s oppo-
sition), but it can monitor auroral spectra continuously for ~40 min during each 106 min orbit. Applying the
spectral analysis proposed by Tao, Kimura, Badman, Murakami, et al,, (2016) and Tao, Kimura, Badman, André,
et al,, (2016) (hereafter Paper | and Paper I, respectively), the auroral and magnetospheric responses to the
described volcanic activity are investigated in this study.

2. Observations and Data Procedure

The Hisaki auroral observations and analysis are described in detail for the reader by Kimura et al. (2015),
Paper |, and Paper lI; therefore, we only describe them briefly herein. The northern auroral region is covered
by the dawn-dusk directed dumbbell-shaped slit with an effective spatial resolution of 17 arcsec and a point-
ing accuracy of +2 arcsec. EXCEED detects auroral emissions over the 80-148 nm wavelength range, covering
part of the H, Lyman and Werner band emissions with full width at half maximum (FWHM) resolution of 0.3
nm. The auroral signals within the 20 arcsec aperture of the slit width are integrated for each specific wave-
length. The waveband 138.5-144.8 nm is used to estimate the total emission and input power. The far ultra-
violet color ratio (CR) is defined as the ratio of the intensity of the waveband absorbed least by atmospheric
hydrocarbons (138.5-144.8 nm) to that absorbed most (123-130 nm), which for EXCEED is defined as
CRexceep- As the CR reflects the depth of the auroral electron precipitation into the hydrocarbon layer, the
auroral electron energy can be estimated assuming a particular atmosphere model. The total number flux
derived from the electron energy and energy flux is converted into the field-aligned current density, using
an averaged auroral area based on an empirical magnetic field model called VIP4 (Connerney et al.,, 1998).
With reference to the auroral electron acceleration theory, the source current density can then be estimated
(Paper Il). We analyzed observations when the Jupiter northern aurora was facing Earth, that is, when the cen-
tral meridional longitude (CML) was 45-345° system Il longitude. As the auroral oval around the northern
pole is shifted from Jupiter’s rotational pole, the auroral aperture and thus the auroral power detectable from
Earth varies with Jupiter’s rotation. This aperture effect on the total power is scaled by multiplying by the fac-
tor, (maximum visible auroral length integrated over all CML)/(visible auroral length at instantaneous CML),
assuming a typical auroral location (Paper Il), which is called “revised power” hereafter.

The solar wind conditions just upstream of Jupiter's magnetosphere are estimated using a one-dimensional
magnetohydrodynamic model that propagates the solar wind variation observed at Earth toward Jupiter (Tao
et al,, 2005). Here we used OMNI 1 h data as the input for this propagation model.

3. Results

Figure 1 shows an overview of the variation of the auroral parameters (Figures 1a-1c) and the IPT power
(Figure 1d) for two periods: season 2014 (December 2013 to April 2014) and season 2015 (November 2014
to May 2015). Auroral intensity enhancements can be observed in minimum-hydrocarbon absorption wave-
bands within the Hisaki/EXCEED wavelength range (Figure 1a) and the total emitted power (Figure 1b). These
are associated with the enhancement of the source current density j0(2.5/kgT, [keV]) before the field-aligned
acceleration of the magnetospheric electrons occurs (Figure 1c). Several enhancements over a few days dur-
ing the observation periods are related to enhancements due to the solar wind dynamic pressure (Figure 1e),
whereas the aurora shows a characteristic variation associated with the long-term IPT enhancement (Figure 1d).
All estimated parameters are provided in the supporting information (Figure S1).

Compared with season 2014 and the early part of season 2015 (until DOY 40), the aurora shows larger
enhancements more frequently after DOY 40 in 2015. With reference to the more continuous observations
in season 2015, auroral enhancements beyond 50 GW in the 136.5-144.8 nm waveband can be seen on
DOY -33 to -32, -7, 12-14, 41, 48-49, 66, 70, 72, 74, 87, 96, 103, 116, and 127 in 2015 (Figure 1a), that is, 3
events in the first 80 days (DOY —40 to 40) and 11 events in the second 80 days (DOY 40-120).
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Figure 1. Time variations of the auroral powers emitted at wavelength (a) 138.5-144.8 nm, (b) appearance normalized total
unabsorbed H, power over wavelength 70-180 nm, (c) maximum field-aligned current that can be carried by precipitating
magnetospheric electrons without field-aligned acceleration, shown for the electron temperature kgTg = 2.5 keV case,
(d) IPT Sl emission (see Yoshikawa et al., 2017 for detail), and (e) solar wind dynamic pressure for season 2014 (left column)
and season 2015 (right column). Grey vertical lines in Figures 1a-1c show errors estimated based on the photon statistics.
Solar wind input data in season 2015 are not complete, which would affect the output grey points in Figure 1e.

Among them, very large enhancements of the power in the 136.5-144.8 nm waveband reach 115, 105, and
173 GW on DOY 66, 74, and 87 in 2015, respectively. As the emission intensity of maximum-hydrocarbon
absorption waveband (126.3-130.0 nm) also increases (Figure S1b), the CRs and electron energies for these
events are not large; their medians and standard deviations (1c) of the electron energy are 165 + 38, 165 + 23,
and 159 + 31 keV, respectively, slightly smaller than the value of 178 + 39 keV derived from the entire data set
within a statistically insignificant level (0.336-0.49c, where ¢ = 39 keV). On the other hand, their electron
fluxes reach 282, 268, and 431 MA, which are 5.2, 5.0, and 7.9 times larger than the mean value over the entire
period, respectively.

Figure 2a shows the CRexceep as a function of CML comparing before (DOY 0-30, blue) and after (50-80, red)
the volcanic activity enhancement. CRexcgep at CML 175-225° decreases significantly during the active period
by up to 30%. We divided the data into two groups: auroral power enhancement events (EV, red points in
Figures 2b-2d) whose revised auroral power at 136.5-144.8 nm reaches >45 GW and other backgrounds
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Figure 2. (a) CRegxceep as a function of CML in system Il and time variations of (b) the power emitted at the wavelength
138.5-144.8 nm, (c) CRexceep and (d) auroral electron flux for season 2015. Blue (red) points in Figure 2a are observed
on DOY —5-25 (45-75) in 2015, and diamonds (crosses) are mean values over 10° binned CML with error bars showing
variances. In Figures 2b-2d, the enhancement event (EV) and backgrounds (BG) are shown by red and black points,
respectively, and 10 day running average of EV and BG are shown by orange and green marks, respectively. The 45 GW
threshold is shown by grey line in Figure 2b. Corresponding auroral electron energy and total current are shown on the
right-hand y axes of Figures 2b and 2c, respectively.

(BG, black points). As discussed above, the occurrences of these events vary. Ten day running averages of
both EV and BG show a decrease in CRexcgep after DOY ~40 in 2015 (Figure 2c), and a slight increase in
electron flux (Figure 2d) with almost constant power (Figure 2b) is seen for BG.

Table 1 lists the median values of the key parameters over five selected periods: (i) season 2014, (ii) DOY —40
to 40, (iii) DOY 40 to 120, (iv) DOY 120 to 140 of season 2015, and (v) the entire data set. The error values repre-
sent the standard deviation. The standard deviation of the emission power, electron flux, and source current
density increase during the period of lo-enhanced activity; for example, the standard deviation of the revised
total emission power is 1,175 GW in (iii) and 493-512 GW in the other periods.

Figure 3a shows the relationship between the mean electron energy and energy flux taken from the active
(period (iii), orange points) and other quiet periods (periods (ii) and (iv), black points) in season 2015. For
the active period, the mean energy decreases as seen in Figure 2c and energy flux mainly increases with a
broadening of its distribution. The difference between the two distributions is evident in the contour maps
of each period shown in Figures 3b and 3c. We derived best-fit Knight relation curves with a density of source
2.5 keV electrons that minimizes the root-mean-square error (RMSE) of the data. We used 90% of the data
points, which have energy flux and mean energy values closest to the average of each value. Moreover,
the density becomes 0.0019 and 0.0027 cm™> during the quiet and active periods, respectively. The
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Table 1

Medians and Standard Deviations of Key Parameters During Each Period

(i) 19 Dec 2013

to 3 Mar 2014

(i

i) 27 Nov 2014
to 9 Feb 2015

(iii) 9 Feb 2015

to 18 May 2015

(iv) 23 Feb 2015
to 14 May 2015

season 2014 DOY —40 to 40 DOY 40 to 120 DOY 120 to 140 (v) All
Power 138.5-144.8 nm (GW) 21.2 £9.69 19.7 £ 8.36 21.8 +£15.1 189 £ 6.94 207114
Power 126.3-130.0 nm (GW) 164 + 7.47 13.6 £ 5.71 16.2 £11.2 13.5 £4.48 15.1 £ 845
CREXCEED 142 £ 037 162 + 0.36 1.46 + 0.31 1.54 + 0.33 151+ 035
Electron energy (keV) 167. + 37. 191. + 41. 171. + 35. 181. + 38. 178. + 39.
Total power (GW) 984. + 449, 915. £ 389. 1009. £ 701. 871. £ 324. 962. + 529.
Electron flux (MA) 585+ 264 489 + 203 58.0 £ 40.1 482+ 159 54.2 + 30.0
Electron flux (uA miz) 0.267 = 0.106 0.216 £ 0.109 0.266 + 0.254 0.210+0.110 0.243 + 0.175
j770(2.5/kgTo (keV)) (NA m_z) 4.01 £2.08 2.88 +£2.02 3.94 £ 422 2.96 + 2.05 342 +£3.03
Solar wind pressure (nPa) 0.025 + 0.070 0.037 £ 0.073 0.049 £ 0.117 0.021 + 0.090 0.032 + 0.082
System lll longitude (deg) 173. £ 61. 176. £ 60. 173. £ 63. 172. £ 54, 174. £ 60.
Revised total power (GW) 1,311. + 493. 1,214. + 509. 1,363. + 1175. 1,124. £ 512. 1,276. + 810.
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Figure 3. Relationship between the mean energy and energy flux of the precipitating auroral electrons estimated from
10 min integrated observations shown as (a) a scatter plot using data during the quiet (black dots) and active (orange
dots) volcanic periods in season 2015, and occurrence map for the (b) quiet and (c) active volcanic periods separately. Grey
lines in Figure 3a are error bars, and mean energy and energy flux distributions are plotted as histograms normalized by
maximum occurrence values in the right and upper panels, respectively, for each period separately. The Knight relation is
shown for different source populations: Ng = 0.0027 cm 3 (solid lines), No =0.0019 cm 3 (dotted lines), No = 0.001 cm 3
(dashed lines), and Ng = 0.01 cn 3 (dash-dotted lines) (e.g., Gustin et al.,, 2004). (d) Increase ratio of the estimated field-
aligned current (see text in detail) Rmodel, cOMpared with the value derived from the observation, Ry, and (e) histogram
of Robs/Rmodel Whose solar wind pressure >0.1 nPa. Color indicates different periods: 2014 seasons (blue), before the lo
volcanic active in 2015 (green), and during the active time (red), and their sum (black in Figure 3e). Large diamonds in
Figure 3d show the cases whose dynamic pressure reach >0.1 nPa, dashed line shows Rops/Rmodel = 1, and dotted lines
show Robs/Rmodel =2,3,and 5.
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goodness of fit is confirmed by a good distributional correlation between the concentrations of data shown
in red (27% occurrence), with the white curves representing the best-fit Knight relation curves. The derived
minimum RMSEs for these two periods are relatively small such that their difference is statistically significant.
The best-fit curves for the constant source density (0.0019 cm™3) correspond to a source electron tempera-
ture of 1.3 keV for the active period, suggesting another possibility for this change.

The median value of the revised power is also largest in period (iii), followed in descending order by periods
(i), (ii), and (iv). Auroral power is modulated by solar wind dynamic pressure (Kita et al., 2016). A linear relation
between auroral power and solar wind was derived using the information at (ii) 0.037 and (iv) 0.021 nPa. For
the pressure of 0.049 nPa of (iii), the total power derived from this linear relation is 1279 GW, which is slightly
smaller than the observed power of 1355 GW, but the difference is not significant compared to the error aver-
aged over the whole period, 281 GW.

The total energy emitted over 800 points (1 point = 10 min.) before (10.4 < DOY 2015 < 52), during
(45.8 < DOY 2015 < 82.5), and after (97.2 < DOY 2015 < 140) the volcanic active period are 6.0 x 10° J,
7.6 x 108 ), and 6.4 x 108 J, respectively. Differences among the volcanic activity phases are much larger than
2.9 x 10° J, derived using the mean error. Additionally, the total energy input into the polar region during the
entire event reaches 2 x 10'° J, which is comparable with the total energy content of the magnetospheric
ions ~1.4 x 10'° J (Bagenal & Delamere, 2011).

4. Discussion

In the auroral feature, we found the following characteristic variations: (i) enhancements of the auroral power
and its variation were caused by sporadic short-term (<1 rot to a few days) enhancements (Figure 1), and (ii) a
relatively small color ratio, that is, auroral electron energy (Figures 2 and 3a-3c), observed during DOY 40-120
of 2015. It is known that volcanic eruptions (outbursts) last days, and the torus enhancement lasts from a few
to tens of days. For this volcanic event in early 2015, the increase in infrared emission at Kurdalagon Patera
was observed on DOY 26, sodium emission began on DOY 10 until its peak on ~DOY 50 (e.g., Yoneda et al.,
2015), and Ol emission began on DOY 20 and peaked during DOY 40-60 (Koga et al., 2018). Moreover, plasma
transfer from the IPT (~6 R)) to the middle magnetosphere of the main auroral source region (~20 R)) is
suggested to take tens of days (Bagenal & Delamere, 2011). Therefore, the variations observed during DOY
40-120 reflect an enhanced plasma transfer at the middle magnetosphere. There are other periods with
smaller CR and sporadic enhancements at the beginning of season 2015, during DOY —40 to —10. This might
have been affected by another volcanic event in late 2014, as reported by de Kleer and de Pater (2016); this
was prior to the Hisaki and sodium monitors, and therefore beyond our data set. First, we qualitatively
compare these parameters with the quiet period, followed by comparison with previous findings obtained
using different methods.

Hisaki’'s long-term monitoring provides the following statistical auroral parameters: the total electron flux pre-
cipitation into the polar region of 54.2 + 30 MA and appearance-revised total emission power of 1276 + 810
GW. The total electron flux is comparable with the plasma corotation-enforcement current of 60-100 MA
derived as a curl of the magnetic field measurement (Khurana, 2001). The revised total power is also compar-
able with other analyses, for example, 1.2 TW (Badman et al., 2016).

For the auroral enhancement event of season 2014, the enhancement of the source current density is com-
parable with the magnetospheric adiabatic variation due to solar wind compression (see section 5.4 of Paper
Il for detail). The other possible process, that is, the positional change toward an open-closed boundary, is
less probable here, referring to observation of auroral deposition toward low latitudes during the interval
of increased lo plasma mass loading reported by Bonfond et al. (2011) and theoretical suggestions (e.g.,
Nichols & Cowley, 2005).

We apply the same analysis to the 66 events in 2014-2015 seasons whose revised power at 136.5-144.8 nm
exceeds 45 GW. We refer to the maximum value of solar wind dynamic pressure over 4 days (from 2 days
before to 2 days after the events), and the minimum value of the pressure over 2 days before the maximum
pressure. These time spans are set by taking into account the solar wind model uncertainty of shock arrival
and possible time lag of magnetospheric response. Magnetopause location is derived from the solar wind
pressure using an empirical model (Huddleston et al., 1998). We estimated the density increase due to the
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magnetospheric compression assuming isotropic shrinking under the conservation of mass and correspond-
ing plasma temperature variation for the adiabatic change to obtain variation of the source current j 0. Then
the field-aligned current density for the observed electron energy is derived referring to the Knight theory.
We compare the estimated increase ratio of the field-aligned current, R odel, With that directly estimated
from the auroral spectral observation, Rops. Figure 4a shows the relationship between Ryodel and Rops.
Since this model is based on the solar wind pressure variation, we exclude the events which are independent
of the solar wind pressure enhancement (maximum pressure <0.1 nPa, 13 events) shown by small marks. If
the variation follows this model, the relationship should be Ry,oqel = Rops- Eighty-one percent of all events are
Robs/Rmodel < 2. Some events which deviated from the relationship, that is, Rmodel/Robs = 2, are more fre-
quently seen for the volcanic activity case (seven red points) compared to the quiet case (two blue points).
In addition, the Ryps/Rmodel Values increase with the increasing Ryps. This deviation from Ryps = Rmoder indi-
cates the contribution of the other processes beyond the above model and assumptions, for example, non-
adiabatic plasma acceleration such as magnetospheric reconnection and local heating, especially for the
volcanic active period and large enhancement events.

As seen in Figure 3, during the active volcanic phase, the typical relationship between the auroral mean
energy and the flux shifts in a number of ways, for example: (i) to the more magnetospheric populated case,
that is, from 0.0019 to 0.0027 cm > or (ii) to a lower temperature of the source plasma, that is, from 2.5 keV to
1.3 keV, for the constant density case, or a combination of both. According to Nichols (2011), as an increase in
the auroral electron flux is achieved in the case corresponding to increase in background density, we will dis-
cuss the plasma increase, above case (i). Note that this population is the suprathermal electron (~a few keV)
which can reach the planetary atmosphere compared with the more abundant cold component (~tens of eV)
in the magnetosphere. This indicates that the energetic suprathermal electrons are also increased by the vol-
canic activity, while the neutrals and ionized plasma enhanced at IPT would be mainly the cold component. In
addition, the estimated auroral electron energy decreases for the active period, indicating a smaller accelera-
tion. This behavior likely arises because the greater population of the source plasma would be enough to
maintain the corotation enforcement current with less electron energy enhancement. A spectral diagnosis
of the IPT emission observed by Hisaki suggests the enhancement of the cold (~several eV) and hot
(~hundrds of eV) electron density during the period of lo-enhanced activity (Kagitani et al., 2017, MOP;
Yoshikawa et al., 2017) and also indicates that the hot electron population increases with distance from
Jupiter (Yoshioka et al., 2017). Although there is a difference in radial distances between the location of IPT
(~6 R)) and the magnetospheric source region of the main aurora (~20 R)), the auroral analysis additionally
suggests the enhancements of the suprathermal plasma in the middle magnetosphere. According to a mod-
eling study by Nichols (2011), the enhancement of the total current seen in this observation also supports the
increase of the magnetosphere plasma population with increased plasma mass loading at lo. The plasma
angular velocity deviates from the corotation at smaller radius with more rapid variation during the increased
plasma mass-loading period. This provides a larger magnetospheric current as well as a field-aligned current,
which has been observed as an increase in auroral emission power (Nichols, 2011).

Using spatially resolved auroral spectra, Gérard et al. (2016) (and partly Gustin et al., 2004 and Paper |) showed
that the relation between auroral electron energy/CR and electron energy flux varies according to which spe-
cific auroral feature is considered. The relationship derived from the polar-integrated Hisaki data set is the
spatially averaged characteristic, as discussed in Paper I. In addition, the estimated electron energies in this
study are mean values and we cannot specify the auroral electron spectral change in detail, that is, whether
a decrease of electron energy over the whole energy range, or a relative decrease (increase) of high-energy
(low-energy) electrons, or a combination of these types of changes. These are open questions beyond the
scope of our data set and present analysis. We need to develop additional methods to ascertain whether
other acceleration processes are dominant.

5. Summary

Long-term monitoring of Jupiter’s aurora by Hisaki/EXCEED has detected enhancements of the auroral power
with a strong sporadic response (by a factor of 2) and a decrease in the color ratio, that is, the auroral electron
energy (by up to 30%), associated with reported lo volcanic events observed in early 2015. The enhanced
plasma mass-loading of lo increases the source current via an increased suprathermal (a few keV) plasma
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density by up to 42%, which contributes to a large field-aligned current to maintain the corotation with less
field-aligned acceleration. Sporadic large auroral enhancements during the interval are not readily explained
by an adiabatic solar wind response model, which suggests a contribution by nonadiabatic
magnetospheric energization.
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