8,752 research outputs found

    Oligopolistic equilibrium and financial constraints

    Get PDF
    In this paper we present a model of oligopoly and financial constraints. We study allocations which are bankruptcy-free (BF) in the sense that no firm can drive another firm to bankruptcy without becoming bankrupt. We show how such allocations can be sustained as an equilibrium of a dynamic game. When there are two firms, all equilibria yield BF allocations. When there are more than two firms, allocations other than BF can be sustained as equilibria but in some cases the set of BF allocations still useful in explaining the shape of equilibrium set.

    Scene-based nonuniformity correction with video sequences and registration

    Get PDF
    We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance (or true scene value). These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and the corresponding observed values through a given detector, a curve-fitting procedure is used to estimate the individual detector response parameters. These can then be used to correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low computational complexity. Experimental results, to illustrate the performance of the algorithm, include the use of visible-range imagery with simulated nonuniformity and infrared imagery with real nonuniformity

    Multi-critical point in a diluted bilayer Heisenberg quantum antiferromagnet

    Full text link
    The S=1/2 Heisenberg bilayer antiferromagnet with randomly removed inter-layer dimers is studied using quantum Monte Carlo simulations. A zero-temperature multi-critical point (p*,g*) at the classical percolation density p=p* and inter-layer coupling g* approximately 0.16 is demonstrated. The quantum critical exponents of the percolating cluster are determined using finite-size scaling. It is argued that the associated finite-temperature quantum critical regime extends to zero inter-layer coupling and could be relevant for antiferromagnetic cuprates doped with non-magnetic impurities.Comment: 4 pages, 6 figures. v2: only minor changes; accepted for publication in Phys. Rev. Let

    Statistical algorithm for nonuniformity correction in focal-plane arrays

    Get PDF
    A statistical algorithm has been developed to compensate for the fixed-pattern noise associated with spatial nonuniformity and temporal drift in the response of focal-plane array infrared imaging systems. The algorithm uses initial scene data to generate initial estimates of the gain, the offset, and the variance of the additive electronic noise of each detector element. The algorithm then updates these parameters by use of subsequent frames and uses the updated parameters to restore the true image by use of a least-mean-square error finite-impulse-response filter. The algorithm is applied to infrared data, and the restored images compare favorably with those restored by use of a multiple-point calibration technique

    Field Induced Multiple Reentrant Quantum Phase Transitions in Randomly Dimerized Antiferromagnetic S=1/2 Heisenberg Chains

    Get PDF
    The multiple reentrant quantum phase transitions in the S=1/2S=1/2 antiferromagnetic Heisenberg chains with random bond alternation in the magnetic field are investigated by the density matrix renormalization group method combined with the interchain mean field approximation. It is assumed that the odd-th bond is antiferromagnetic with strength JJ and even-th bond can take the values {\JS} and {\JW} ({\JS} > J > {\JW} > 0) randomly with probability pp and 1p1-p, respectively. The pure version (p=0p=0 and p=1p=1) of this model has a spin gap but exhibits a field induced antiferromagnetism in the presence of interchain coupling if Zeeman energy due to the magnetic field exceeds the spin gap. For 0<p<10 < p < 1, the antiferromagnetism is induced by randomness at small field region where the ground state is disordered due to the spin gap in the pure case. At the same time, this model exhibits randomness induced plateaus at several values of magnetization. The antiferromagnetism is destroyed on the plateaus. As a consequence, we find a series of reentrant quantum phase transitions between the transverse antiferromagnetic phases and disordered plateau phases with the increase of the magnetic field for moderate strength of interchain coupling. Above the main plateaus, the magnetization curve consists of a series of small plateaus and the jumps between them, It is also found that the antiferromagnetism is induced by infinitesimal interchain coupling at the jumps between the small plateaus. We conclude that this antiferromagnetism is supported by the mixing of low lying excited states by the staggered interchain mean field even though the spin correlation function is short ranged in the ground state of each chain.Comment: 5 pages, 8 figure

    Spontaneous alloying in binary metal microclusters - A molecular dynamics study -

    Full text link
    Microcanonical molecular dynamics study of the spontaneous alloying(SA), which is a manifestation of fast atomic diffusion in a nano-sized metal cluster, is done in terms of a simple two dimensional binary Morse model. Important features observed by Yasuda and Mori are well reproduced in our simulation. The temperature dependence and size dependence of the SA phenomena are extensively explored by examining long time dynamics. The dominant role of negative heat of solution in completing the SA is also discussed. We point out that a presence of melting surface induces the diffusion of core atoms even if they are solid-like. In other words, the {\it surface melting} at substantially low temperature plays a key role in attaining the SA.Comment: 15 pages, 12 fgures, Submitted to Phys.Rev.

    D6 Family Symmetry and Cold Dark Matter at LHC

    Full text link
    We consider a non-supersymmetric extension of the standard model with a family symmetry based on D6 Z2 Z2, where one of Z2's is exactly conserved. This Z2 forbids the tree-level neutrino masses and simultaneously ensures the stability of cold dark matter candidates. From the assumption that cold dark matter is fermionic we can single out the D6 singlet right-handed neutrino as the best cold dark mater candidate. We find that an inert charged Higgs with a mass between 300 and 750 GeV decays mostly into an electron (or a positron) with a large missing energy, where the missing energy is carried away by the cold dark matter candidate. This will be a clean signal at LHC.Comment: 20 pages, 7 figure

    Classical Correlation-Length Exponent in Non-Universal Quantum Phase Transition of Diluted Heisenberg Antiferromagnet

    Get PDF
    Critical behavior of the quantum phase transition of a site-diluted Heisenberg antiferromagnet on a square lattice is investigated by means of the quantum Monte Carlo simulation with the continuous-imaginary-time loop algorithm. Although the staggered spin correlation function decays in a power law with the exponent definitely depending on the spin size SS, the correlation-length exponent is classical, i.e., ν=4/3\nu=4/3. This implies that the length scale characterizing the non-universal quantum phase transition is nothing but the mean size of connected spin clusters.Comment: 4 pages, 3 figure
    corecore