
Typeset with jpsj2.cls <ver.1.2> Full Paper
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The multiple reentrant quantum phase transitions in the S = 1/2 antiferromagnetic Heisen-
berg chains with random bond alternation in the magnetic field are investigated by the density
matrix renormalization group method combined with interchain mean field approximation. It is
assumed that odd numbered bonds are antiferromagnetic with strength J and even numbered
bonds can take the values JS and JW (JS > J > JW > 0) randomly with the probabilities p and
1−p, respectively. The pure version (p = 0 and p = 1) of this model has a spin gap but exhibits
a field-induced antiferromagnetism in the presence of interchain coupling if Zeeman energy due
to the magnetic field exceeds the spin gap. For 0 < p < 1, antiferromagnetism is induced by
randomness at the small field region where the ground state is disordered due to the spin gap
in the pure version. At the same time, this model exhibits randomness-induced plateaus at
several values of magnetization. The antiferromagnetism is destroyed on the plateaus. As a
consequence, we find a series of reentrant quantum phase transitions between transverse anti-
ferromagnetic phases and disordered plateau phases with the increase of magnetic field for a
moderate strength of interchain coupling. Above the main plateaus, the magnetization curve
consists of a series of small plateaus and jumps between them. It is also found that antifer-
romagnetism is induced by infinitesimal interchain coupling at the jumps between the small
plateaus. We conclude that this antiferromagnetism is supported by the mixing of low-lying
excited states by the staggered interchain mean field even though the spin correlation function
is short ranged in the ground state of each chain.

KEYWORDS: random quantum spin chain, DMRG, disorder-induced order, field-induced order,
randomness-induced plateau, reentrant phase transition

1. Introduction

In recent studies of one-dimensional quantum spin sys-
tems, exotic quantum phases induced by a strong mag-
netic field have been attracting broad interest. Among
them, field-induced transverse antiferomagnetism has
been widely investigated in many experimental and the-
oretical studies.1–4) If a magnetic field larger than the
spin gap is applied to a spin-gapped system, the single-
chain ground state becomes the Tomonaga-Luttinger liq-
uid and the transverse antiferromagnetic order develops
as soon as a weak interchain coupling is switched on.

Disorder is another origin of order in spin-gapped low
dimensional quantum magnets.5–11) In the presence of
disorder, spins in the nonmagnetic ground state revive
and induce so-called ’disorder-induced order’ even in the
absence of magnetic field.

On the other hand, the possibility of a disorder-
induced magnetization plateau is also predicted in a
certain class of one-dimensional random quantum mag-
nets.11–16) This corresponds to the spin gap state induced
by disorder and magnetic field.

Therefore, the effect of disorder on quantum magnets
in a magnetic field is twofold. Namely, disorder enhances
magnetic order by reviving spins, while it suppresses
magnetic order by forming plateaus. In the present work,
we investigate the competition between these two contra-
dictory aspects of randomness in quasi-one-dimensional
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quantum spin systems and the resulting multiple reen-
trant phase transitions between transverse antiferromag-
netic phases and disordered plateau phases. Similar prob-
lem has been discussed by Mikeska eat al.14) for the di-
luted dimer network system and by Nohadani et al.15,16)

for the coupled random dimer network.
This paper is organized as follows. In the next section,

the model Hamiltonian is presented. The single-chain
magnetization curve is calculated in §3. Within the inter-
chain mean field approximation, we predict the multiple
reentrant behavior with the increase in magnetic field in
§4. The calculation of the spin-spin correlation function
is presented in §5. Even in the non-plateau state, where
infinitesimal interchain coupling induces transverse or-
dering, the correlation function of a single chain turned
out to be short ranged. On the basis of these observa-
tions, the mechanism of antiferromagnetism away from
the plateau region is explained in §5. The final section is
devoted to summary and discussion.

2. Model Hamiltonian

As a candidate model in which reentrant antiferro-
magnetism is expected, we investigate the quasi-one-
dimensional random dimerized S = 1/2 Heisenberg chain
whose Hamiltonian is given by

H =
∑

j


N/2∑
i=1

JS2i−1,jS2i,j +
N/2∑
i=1

JijS2i,jS2i+1,j
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Fig. 1. Magnetization curves of pure single chains with p=0 and
1.0. The chain length is N = 240.
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Fig. 2. Magnetization curve of single chains for p=0.2, 0.4, 0.6
and 0.8. The chain length is N = 120. Magnetization is measured

for the middle 60 sites to reduce the boundary effect. The average
is taken over 64 samples. Error bars are shown only for selected
points because otherwise the symbols are extremely dense.

+
N∑

i=1

∑
<j,j′>

JintSi,jSi,j′ , (1)

where Jij = JS with the probability p and Jij = JW with
the probability 1−p. The interchain exchange coupling is
denoted by Jint. The spin operator Si,j denotes the spin
on the i-th site of the j-th chain. The summation

∑
<j,j′>

is taken over all nearest neighbour pairs of chains. In the
present work, we assume JS > J > JW > 0. A similar
model with ferromagnetic JW has been discussed11) in
relation to experimental materials.5)

3. Single-Chain Magnetization Curve

The ground state magnetization curve of a single chain
with Jint = 0 in (1) is calculated using the density matrix
renormalization group (DMRG) method. The magneti-
zation per site M is defined by

M ≡ 1
N

N∑
i=1

⟨Sz
i ⟩ , (2)

where the summation is taken over all spins in a single
chain and the chain index j is suppressed. Regular mod-
els with p = 0 or p = 1 have magnetization plateaus at
M = 0, which corresponds to the spin gap and at the
saturation magnetization M = Ms ≡ 1/2. However, they
have no plateaus with intermediate values of magnetiza-
tion as shown in Fig. 1.

On the other hand, the magnetization curves for p ̸=
0, 1 consist of a sequence of plateaus. Between them,
magnetization increases almost continuously. A typical
example is shown in Fig. 2 for JS = 2, JW = 0.1 and
J = 1 for various values of p.

The main features of the magnetization curves can be
understood using the cluster picture similar to that de-
scribed in ref. 11. With the increase in magnetic field,
we observe three large plateaus that are numbered I,
II and III in Fig. 2. Let us consider a cluster consist-
ing of q successive JS-bonds and q − 1 J-bonds in be-
tween. This is called the ’q-cluster’ as in ref. 11. The 2q
spins in a cluster form a strongly coupled singlet clus-
ter. The two spins connected to both ends of this cluster
by J-bonds are almost free but weakly coupled mediated
by the quantum fluctuation within the strongly coupled
cluster. Other spins form singlet dimers on the J-bonds
if JW << J .

On plateau I with magnetization M = (1−p)Ms, spins
that do not belong to the q-clusters are all polarized. On
plateau II, end spins separated by 1-clusters with a single
JS-bond remain unpolarized. Similarly, on plateau III,
end spins separated by 2-clusters also remain unpolarized
and so on. These interpretations are confirmed by com-
paring them with the magnetization process of a cluster
consisting of a q-cluster and two additional end spins con-
nected by J-bonds on both ends of the q-cluster. Lower
plateaus due to spins separated by longer q-clusters are
not clearly identified within the present scale. The low
field part of the magnetization curve reflects the singu-
larity of the low energy excitation spectrum as described
in ref. 11.

Above plateau I, magnetization increases with the se-
ries of plateaus and narrow continuous parts up to the
saturation field. As p increases, the width of the plateaus
decreases and magnetization curve becomes almost con-
tinuous.

4. Effect of Interchain Exchange Interaction

We treat interchain coupling by mean field approxima-
tion17) assuming the transverse antiferromagnetic order
as ⟨

Sx
i,j

⟩
=

{
(−1)im Jint < 0
(−1)iPjm Jint > 0.

(3)
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For Jint > 0, we assume that the two dimensional lat-
tice of the chains is bipartite. The value of Pj is +1 if
the site j belongs to one of the sublattices and −1 if it
belongs to the other. We thus have the interchain mean
field Hamiltonian HIMF for each chain as

HIMF =
N/2∑
i=1

JS2i−1S2i +
N/2∑
i=1

JiS2iS2i+1

− Hst

N∑
i=1

(−1)iSx
i , (4)

with Hst = z|Jint|m. If we denote the staggered magneti-
zation m calculated using given value of Hst by m(Hst),
the self-consistent equation reads

Hst = λm(Hst), (λ ≡ z|Jint|). (5)

Therefore, the minimum interchain coupling that
stabilizes transverse ordering is given by λc =
limHst→0 Hst/m(Hst), which is equal to the inverse of the
single-chain staggered susceptibility χst. If χst diverges,
the transverse ordering is stabilized for the infinitesi-
mal interchain coupling within the interchain mean field
approximation. Practically, we estimate m(Hst) numer-
ically with a tiny Hst and estimate λc from the ratio
Hst/m(Hst).

Figure 3 shows the magnetic field dependence of
λc(Hst) estimated with Hst = 0.0005 for p = 0.2 and
p = 0.8 as representatives of small p and large p cases.
The magnetization curves in the absence of staggered
field are also presented. The H-λc(Hst) curve has mul-
tiple maxima, which clearly shows that multiple reen-
trant behavior takes place for finite interchain coupling in
the ground state. It should be noted that the H-λc(Hst)
curves are insensitive to the values of Hst around these
maxima. However, around the dips and minima, the val-
ues of λc(Hst) have significant Hst-dependence.

For p = 0.8, λc(Hst) remains significantly small above
the main plateaus compared with the peak values on the
main plateaus. Therefore, we expect no disordered phase
for moderate values of interchain coupling in this re-
gion where the magnetization curve appears almost con-
tinuous. Even away from the main plateaus, however,
the magnetization curve shows a series of small plateaus
and narrow continuous parts between them. Correspond-
ingly, λc(Hst) tends to a finite value as Hst → 0 on
these plateaus. The detailed features of such behavior are
shown in Fig. 4 for 2.17 ≤ H ≤ 2.21 as a representative.
On these small plateaus, λc(Hst) clearly tends to small
finite values as shown in Fig. 4 around H = 2.173 and
H = 2.208. On the other hand, in the true off-plateau
state, λc(Hst) tends to zero, suggesting the divergence
of χst. In this case, the transverse antiferromagnetic or-
der is stabilized in the presence of infinitesimal inter-
chain interaction. In Fig. 4, such behavior is observed
at H = 2.1905. To investigate this behavior in more de-
tail, we present the Hst-dependence of λc(Hst) in Fig.
5 at H = 2.1925, 2.1905 and 2.188 using the data for
N =480. Only a 0.2% deviation from H = 2.1905 causes
a clear upturn of λc(Hst). Although a weak size depen-
dence is present, the data for N = 240 plotted in smaller
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Fig. 3. H-dependence of λc(Hst) with Hst = 0.0005 for (a) p =
0.2 and (b) p = 0.8. The magnetization curves are also shown

for reference. The staggered magnetization m is measured for the
middle 60 sites to reduce the boundary effect. The chain length
is N = 120 and the average is taken over 512 samples. Error bars
are shown only for selected points.

symbols also show a similar behavior. Therefore, we ex-
pect that this is not the finite size effect but is an essen-
tial feature of the present system in the thermodynamic
limit. A similar behavior is observed for other values of
H above the main plateaus. Therefore, we conclude that
the antiferromagnetic order is stabilized by infinitesimal
interchain coupling only within a narrow region where
magnetization increases continously between successive
small plateaus.

5. Correlation Functions

To obtain more insight into the nature of each
state on the basis of the properties of single chains,
we also investigated the spin-spin correlation func-
tion

⟨
Sx

i Sx
j

⟩
as a function of |i − j|. Figure 6 shows∣∣⟨Sx

i Sx
j

⟩∣∣ (
= (−1)i−j

⟨
Sx

i Sx
j

⟩)
for H = 2.1905(◦) where

λc tends to 0 and χst(Hst) diverges. Even in this case, the
spin-spin correlation function is short ranged. Indeed, the
behavior of the corelation function is almost the same as
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Fig. 4. H-dependence of λc for 2.17 ≤ H ≤ 2.21. The values of
the staggered field are Hst = 0.002, 0.0015, 0.001, 0.0005, 0.00025
and 0.0001 from top to bottom. The chain length is N = 480 and
measurement is carried out for the middle 240 sites. The average

is taken over 256 samples. The error bars are within the size of
the symbols.
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Fig. 5. Hst-dependence of λc around H = 2.1905. The big sym-
bols are for N = 480 and the small symbols are for N =

240. The solid lines are power law extrapolation from Hst =
0.0005, 0.001, 0.0015 and 0.002 for N = 480. The average is taken
over 256 samples.
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Fig. 6. Transverse correlation function |
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| at H =

2.1905(◦) where χst(Hst → 0) diverges and at H = 2.1735(•)
where χst(Hst → 0) is finite. The average is taken over 512 sam-
ples for N = 240.

100 101

10−4

10−2

|<Si
xSj

x>|

|i−j|

H=2.1905
p=0.8
p=0

Fig. 7. Log-log plot of correlation function with p = 0.8 (open

circles) and p = 1(filled squares) at H = 2.1905 for N = 240.
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Fig. 8. Schematic finite temperature phase diagram on H − T -
plane.

that for H = 2.1735(•) where λc tends to small but finite
values and χst(Hst) tends to large but finite values. In
Fig. 7, the log-log plot of the same correlation function
is compared with that for the regular chain with p = 1
at H = 2.1905. It is clear that the rapid decay of cor-
relation for the random chain is distinct from the power
law decay for the regular chain.

This can be understood as follows. In the off-plateau
region, the continuum of low energy excited states pile
up on the ground state. In many of these excited states,
the spins that are not correlated in the ground state are
correlated. The staggered transverse magnetic field mixes
up these excited states resulting in divergent staggered
susceptibility. In this case, the long range transverse or-
der can be stablized by infinitesimal interchain coupling
even though the spin correlation is short ranged in the
ground state. On the other hand, in the plateau state,
there exists no low-energy excited states that support
the long range order with small interchain coupling.

It should also be noted that the divergence of χst does
not always contradict finite correlation length, because
the staggered magnetization does not commute with the
Hamiltonian and the summation

∑
i,j(−1)i−j

⟨
Sx

i Sx
j

⟩
is

not directly proportional to χst.

6. Summary and Discussion

The transverse magnetic ordering in the ground state
of the random quantum Heisenberg chain is investigated
using the density matrix renormalization group and the
interchain mean field approximation. It is predicted that
the multiple reentrant behavior takes place between the
disordered plateau phases and transverse antiferromag-
netic ordered phases. This is in contrast to the case of
random dimer networks discussed by Mikeska et al.14)

and Nohadani et al.,15,16) in which the reentrant transi-
sition takes place only once.

It is also pointed out that even in the non-plateau
regime the spin-spin correlation of the single chain is
short ranged. Nevertheless, the long range order is es-
tablished with infinitesimal interchain interaction with
the help of excited states that pile up near the ground
state and are mixed up by the interchain staggered mean
field.
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In this work we concentrated on the ground state phase
transition. Nevertheless, the reentrant behavior should
survive even at finite temperatures. The transition tem-
perature should be high between the plateau region and
low or zero on the plateau region as shown in Fig. 8
schematically. This behavior manifests itself as anoma-
lous behavior even above the transition temperature.
Therefore, if we increase magnetic field at a fixed temper-
ature, the transverse spin fluctuation would be strongly
enhanced when we pass near the ordered phase.

We expect that the present type of reentrant behavior
is universal in random quantum spin systems in which
singlet dimer formation is randomly perturbed to pro-
duce local almost free spins. In contrast to the random
dimer network systems in which dilution produces iso-
lated spins, the free spins in the present system are pro-
duced by the random competition between two different
dimer interactions JS and J , each of which prefers dif-
ferent dimer configuration. This is the origin of a more
complicated structure of the phase diagram. Thus, we
expect the reentrant behavior due to similar mechanism
in a variety of systems.

The computation in this work was carried out using
the facilities of the Supercomputer Center, Institute for
Solid State Physics, University of Tokyo and the Informa-
tion Processing Center, Saitama University. This work is
supported by a Grant-in-Aid for Scientific Research from
the Ministry of Education, Culture, Sports, Science and
Technology, Japan.
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