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Abstract 
In this paper we present a model of oligopoly and financial constraints. We study allocations which are 
bankruptcy-free (BF) in the sense that no firm can drive another firm to bankruptcy without becoming 
bankrupt. We show how such allocations can be sustained as an equilibrium of a dynamic game. 
When there are two firms, all equilibria yield BF allocations. When there are more than two firms, 
allocations other than BF can be sustained as equilibria but in some cases the set of BF allocations 
still useful in explaining the shape of equilibrium set. 
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1. Introduction

There is ample evidence that �nancial constraints play an important role in the behavior of �rms

(Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997). We begin with the observation that the

punishment for violation of a �nancial constraint must be severe or otherwise �rms would default

all the time. Suppose that the punishment is so severe that �rms violating �nancial constraints

loose the ability to compete and, in fact, disappear (Sharfstein and Bolton, 1990). Firms might

then have incentives to take actions that will make it impossible for competitors to ful�ll �nancial

constraints in the hope to get rid of them.

In this paper we provide a model of oligopolistic interaction among �rms when they fully

take into account the �nancial constraints of all other �rms and not only their own �nancial

constraints. We model these �nancial constraints by assuming that pro�ts must be greater than

or equal to an exogenously given value. When pro�ts are below this value, we will say that this

�rm is bankrupted. Our aim is to o¤er a dynamic theory of oligopoly in which �rms can bankrupt

each other. This theory is in sharp contrast to the standard theory of repeated games in which

bankruptcy considerations are not considered.

Our �rst step is to de�ne the set of actions that are bankruptcy-free (BF in the following). This

set of actions has two properties. On the one hand, pro�ts are not less than some exogenously

given value for any �rm. On the other hand, no �rm can be pushed below this value by any

action of another �rm that obtains pro�ts in excess of this value. The concept of BF captures the

opportunities for ruining other players that are not captured by standard concepts such as Cournot

equilibrium. We show that such a concept plays an important role in shaping the set of long-run

equilibria in an industry.

Our second step consists of characterizing the set of BF actions under alternative assumptions.

For simplicity, we con�ne ourselves to the case in which the product is homogeneous.1 In the

case in which average costs are non-decreasing, we show that a large number of output vectors

are BF (Proposition 1). For instance, when all �rms have constant average costs and all �rms are

identical, any output vector yielding non-negative pro�ts is BF (Example 1). When there are two

�rms with identical increasing average costs, the set of BF output vectors is a square (Example 2).

By contrast, when average costs are decreasing, BF output vectors are either such that all �rms

1We note that some forms of product heterogeneity are equivalent to product homogeneity.
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have zero pro�ts and further increases in output produce negative pro�ts or those in which only

one �rm is active (Proposition 2 and Example 3). Thus, BF captures the idea, present in many

informal discussions, that markets with non-decreasing costs and markets with decreasing costs are

fundamentally di¤erent. In our case this is because under increasing costs, ruining a competitor

requires an increase in the average cost that makes the attacking �rm weaker. Under decreasing

costs, ruining a competitor implies a decrease in average costs that make the attacking �rm even

stronger.

Our next step is to consider a dynamic game in which �rms can be bankrupted and accordingly

they might disappear. This setup is not a repeated game because the game in each period depends

on the strategies chosen in the past. Rather it is a special case of a stochastic game (Shapley, 1953;

Neyman and Sorin, 2003) in which transition probabilities are zero or one (Masso and Neme, 1996).

Such games are called Dynamic Games. To simplify our task we make two assumptions: pro�ts

cannot be transferred from one period to the next and the �nancial constraint in each period

requires that pro�ts must be non-negative in each period. The second assumption is innocuous

because it entails just a numerarization of pro�ts. However, the �rst assumption is certainly not

innocuous and is discussed later on.

We �rst note that if the Nash equilibrium (NE) corresponding to the static game is BF, this

allocation can be supported as a Subgame Perfect NE (SPNE). Next, we show for duopoly that

when the discount rate is su¢ ciently close to one, any NE must yield BF allocations (Proposition

3). Unfortunately, this result cannot extended to three players (Example 4). Given this result,

we study equilibria by considering separately the cases in which average costs are increasing and

decreasing.2

Consider �rst increasing average costs. The concept of minimax payo¤ plays an important role

here (as in the folk theorem for repeated games) but it has to be adapted to the case in which

actions are constrained to be BF. We refer to this adaptation as the minimax BF payo¤. We show

that any BF action pro�le that gives a payo¤ greater than the minimax BF payo¤ can be supported

as an SPNE for a discount factor close to one (Proposition 5). Furthermore, payo¤s less than the

minimax BF payo¤ cannot be sustained in any SPNE (Proposition 4).

Finally, we tackle the case of decreasing average costs. We show that BF action pro�les with at

2The case of constant returns is a limit case between increasing a decreasing average costs and is brie�y considered.
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least two active �rms cannot be supported by an NE and we give conditions under which BF action

pro�les with only one active �rm can be supported as NE (Proposition 7). We also show that action

pro�les in which all �rms produce a positive quantity cannot be supported as NE (Proposition 8).

However, there are SPNE with all but one active �rms (Example 8).

Our results show that introduction of a �nancial constraint a¤ects the equilibrium strategies

of �rms and, in some cases, substantially reduces the set of equilibrium payo¤s. For example,

Proposition 3 implies that the folk theorem of repeated games does not hold in our setup. Moreover,

playing the Cournot equilibrium in each period and the standard stick-and-carrot punishments need

not be an NE either. This shows that our approach has important implications for collusion, merger

and thus, anti-trust policy.

We end this introduction with a preliminary discussion of the literature (see more on this in

the �nal section). Although a number of papers demonstrate that the �nancial structure does

a¤ect market outcomes in oligopoly, most previous studies adopt either static or two-stage models.

Kawakami and Yoshida (1997) and Spagnolo (2000) are the only two exceptions. Both papers make

use of repeated games like ours. The former incorporates a simple exit constraint into the repeated

prisoners�dilemma. In their model, each �rm must exit from the market no matter how it plays if

the rival deviates over a certain period of time. Fixing the length of such an endurable period of time

intrinsic to each �rm, they show that predation can occur when a discount factor becomes large. The

latter study examines the role of stock options in repeated Cournot games. In this model, unlike

standard repeated games, �rms do not necessarily maximize average discounted pro�ts because

stock options a¤ect managers�incentives. Considering this e¤ect, Spagnolo shows that collusion is

easily achieved. Finally, our approach might provide support to the notion that �rms may engage

in predatory activities when pursuing pro�t maximization. Standard explanations of this behavior

are based on incomplete information (Milgrom and Roberts, 1982), the learning curve (Cabral and

Riordan, 1994) or �rms playing an attrition game (Roth, 1996). In our model, �rms have complete

information, the technology is �xed and �rms play standard quantity-setting games. However, our

concept of BF focuses on allocations in which predation is impossible. Predation in equilibrium

might occur when there are sunk costs.3

3An example is available under request.
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2. Bankruptcy-Free Allocations

There are n �rms. Each �rm, say i, has an action space denoted by Si. An action could be an

output, a price, a supply function, etc. An action pro�le is a vector of actions s 2 �ni=1Si. Let

s�i = (s1; ::; si�1; si+1; ::; sn); and (ŝi; s�i) = (s1; ::; si�1; ŝi; si+1; ::; sn): The pro�t of �rm i depends

on the action pro�le and is denoted by �i(s).

De�nition 1. An action pro�le ŝ = (ŝ1; ŝ2; ::::; ŝn) is bankruptcy-free (BF) if:

a) �i(ŝ) � 0; for all i 2 f1; ::; ng.

b) For all sj such that �j(ŝ�j ; sj) � 0; �i(ŝ�j ; sj) � 0 for all i 6= j:

In other words, a pro�le of actions is BF if it yields non negative pro�ts for all �rms and no �rm

can change its action, obtain non-negative pro�ts and ruin other �rm. Note that if �rms are required

to make vi pro�ts to avoid bankruptcy, we can de�ne a new pro�t function as �0i(s) � �i(s) � vi
and rede�ne BF with respect to this new pro�t function.

To grasp the implications of BF on economic environments, in this section we study the set of

BF actions in the quantity-setting model, one of the most popular models in industrial organization.

Let si = xi where xi 2 R+ denotes the quantity set by �rm i. Let x = (x1; ::; xn) be a quantity

pro�le and pi(x) be the inverse demand function for �rm i assumed to be strictly decreasing in xi.

Let ci(xi) be the cost of producing xi for �rm i: The average cost of producing xi is denoted by

AV Ci(xi). Unless stated speci�cally we will assume that ci(0) = 0. We assume that pro�ts for any

�rm are a concave function of its own output when this output is positive.

Spence (1980) observed that some models of product heterogeneity can be transformed into the

model of a single homogeneous product. Given this observation we will concentrate on the case of

product homogeneity. If a �rm is producing a positive quantity we call it an active �rm. Otherwise

it is an inactive �rm. Clearly, an action pro�le with all inactive �rms and no sunk costs is BF: In

what follows we concentrate in the characterization of BF action pro�les with at least an active

�rm.

We start by characterizing the set of BF action pro�les for n �rms with non-decreasing average

costs. We assume that for all i; and for all x�i ; there exist �xi 6= 0 such that �i(x�i; �xi) = 0: To

build intuition, we �rst consider two examples.

Example 1. Suppose there are two �rms whose average cost is constant with inverse demand
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p(x1; x2) = 2�x1�x2. First, set AV C1 = 1 and AV C2 = 1:5. In Figure 1, the set of allocations in

which �rm 1 (resp. 2) has non negative pro�ts is the triangle with vertex (0; 1; 1) plus the vertical

axis (resp. (0; 0:5; 0:5) plus the horizontal axis). The set of BF action pro�les is any pair (x̂1; x̂2)

with 0 � x̂1 � 1 and x̂2 = 0. If the two �rms are equal with AV C1 = AV C2 = 1, the set of BF

allocations is the triangle with vertex (0; 1; 1).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x2

Figure 1

It is easy to see that this example can be generalized to more than two �rms and any continuous

inverse demand. In this case, only the �rm with the lowest average cost can be active in a BF

allocation. Let us consider now the case in which average costs are increasing.

Example 2. Suppose there are two �rms with identical increasing average costs ci(xi) = 0:5x2i ;

i = 1; 2. The inverse demand function is p(x1; x2) = (10 � x1 � x2). Thus, �i(x1; x2) = (10 �

x1 � x2)xi � 0:5x2i ; i = 1; 2. In Figure 2, the area where x2 � 10 � 1:5x1 plus the vertical axis

(resp. x1 � 10 � 1:5x2 plus the horizontal axis) is the locus of points in which �rm 1 (resp. 2)

has non-negative pro�ts. Both lines intersect at (4; 4). Starting from any action pro�le in the

square [0; 4]� [0; 4], we see that a unilateral change in output by, say, �rm 1 cannot drive �rm 2 to

bankruptcy without �rm 1 being bankrupt itself. However a point such as (1; 5) is not BF because

�rm 1 can produce output of 3 and drive �rm 2 to bankruptcy without being bankrupt itself.
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Again the above example can be generalized to two �rms with continuous increasing average

costs and facing a continuous and decreasing inverse demand function whenever (x̂1; x̂2) such that

�i(x̂1; x̂2) = 0; and x̂i 6= 0; i = 1; 2; exist. In these cases, an action pro�le (x1; x2) is BF if and

only if xi � x̂i for all i 2 f1; 2g and �i(x1; x2) � 0.

We are now prepared for our �rst characterization that covers all the above cases.

Proposition 1. Let n �rms have non-decreasing average costs. An action pro�le x = (x1; :::; xn)

is BF if �i(x) � 0 for all i 2 N; and any of the following conditions hold.

(i) All �rms have the same average cost, that is, AV Cj(xj) = AV Ck(xk) for all j; k; or

(ii) For all active �rms j; k if AV Cj(xj) < AV Ck(xk); �rm j can always increases its output in a

way that matches the average cost of �rm k, retaining non negative pro�ts. That is, there is ~xj

such that AV Cj(~xj) = AV Ck(xk); and p(
P
i6=j xi + ~xj)�AV Cj(~xj) � 0:

If a �rm j is inactive, then for all x0j 6= 0 such that �j(x�j ; x0j) = 0; AV Cj(x0j) > AV Ck(xk) for all

active �rms k:

Proof. It is obvious that the action pro�les described in (i) are BF: For the action pro�les

described in (ii); since the average cost is non-decreasing it is obvious that no �rm with positive

production can drive a �rm with lower average cost to bankruptcy. It is also obvious that no

inactive �rm can enter the market and drive the active �rms to bankruptcy. We also show that
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it is not possible for a �rm with positive production to drive a �rm with higher average cost to

bankruptcy. Let �xj be such that

p(
X
i6=j

xi + �xj) � AV Cj(�xj): (2.1)

If AV Cj(�xj) � AV Ck(xk); since the average cost is non-decreasing, then p(
P
i6=j xi + �xj) �

AV Ck(xk) � 0: If AV Cj(�xj) < AV Ck(xk); then AV Cj(�xj) < AV Cj(~xj); and since average cost

is non-decreasing, �xj < ~xj : Then p(
P
i6=j xi + �xj) > p(

P
i6=j ~xi + ~xj) � AV Cj(~xj) = AV Ck(xk):

Therefore, for all k 6= j; with higher average cost p(
P
i6=j xi + �xj)�AV Ck(xk) � 0:

Finally, we show that any other action pro�le cannot be BF:

Let x0 = (x01; :::; x
0
n) be such that �i(x

0) � 0 for all i 2 N; and suppose that there are two

active �rms, j and k; with AV Cj(x0j) < AV Ck(x
0
k); and such that, for ~xj with AV Cj(~xj) =

AV Ck(x
0
k); p(

P
i6=j x

0
i + ~xj) � AV Cj(~xj) < 0: Since �j(x0) > 0 and the price-average cost dif-

ference is decreasing, �rm j can decrease production and make cero pro�ts. That is, there is

�xj < ~xj such that p(
P
i6=j x

0
i + �xj) � AV Cj(�xj) = 0: Since AV Cj(�xj) < AV Cj(~xj) = AV Ck(x

0
k);

p(
P
i6=j x

0
i + �xj) � AV Cj(�xj) > p(

P
i6=j x

0
i + �xj) � AV Ck(x0k); which implies that �rm j can drive

�rm k to bankruptcy.

Let x0 = (x01; :::; x
0
n) be such that �i(x

0)� 0 for all i 2 N; and suppose that there are two active �rms,

j and k; with AV Cj(x0j) < AV Ck(x
0
k); and such that �rm j can never match the average cost of �rm

k; that is, for all ~xj ; AV Cj(~xj) < AV Ck(x0k): Let �xj be such that p(
P
i6=j x

0
i+ �xj)�AV Cj(�xj) = 0:

By our assumptions �xj exist, and since AV Cj(�xj) < AV Ck(x0k); �rm k is bankrupt.

Finally, if for an inactive �rm k there is an �xk 6= 0 such that AV Cj(x0j) > AV Ck(�xk) and

p(
P
i6=k x

0
i + �xk) = AV Cj(x

0
j); �rm k can increase his production above �xk and make �rm j bank-

rupt while retaining positive pro�ts.

We now consider the case of decreasing average costs. As before, to build intuition we �rst

consider an example.

Example 3. Suppose there are two �rms with cost functions ci(xi) = 88 + 10xi; for all xi 6= 0;

and ci(0) = 0: Let p(x1+ x2) = 100� x1� x2: The area in which both �rms have positive pro�ts is

x2 � 90� x1� 88=x1 (continuous line in Figure 3) and x1 � 90� x2� 88=x2 (dotted line in Figure

3). Point B = (B1; B2) = (44; 44) is a BF action pro�le such that �i(x̂1; x̂2) = 0: Note that when

x1 = x2 = 1, both agents also have zero pro�ts, but this action pro�le is not BF because, say,
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�rm 1 can produce output of 88, obtaining zero pro�ts and bankrupting �rm 2. Also note that all

action pro�les such that x2 = 0; x1 � B1 and �1(x1; 0) � 0, or x1 = 0; x2 � B2 and �2(0; x2) � 0

are BF: It is easy to see in Figure 3 that no other action pro�le can be BF:

1007550250

100

75

50

25

0

x1

x2

x1

x2

B

B1

B2

Figure 3

Our next result characterizes the set of BF allocations under decreasing average costs. We

restrict our attention to economies that satisfy the following assumption.

Assumption 1. The inverse demand function is strictly decreasing and limx!1p(x) = 0: Each

�rm has decreasing average cost with limx!1AV Ci(x) = ai > 0; and there is (x1; ::; xn) such that

p(x1 + ::+ xn) > AV Ci(xi) for all i 2 f1; ::; ng:

Assumption 1 guarantees the existence and uniqueness of an action pro�le (x̂1; ::; x̂n) >> (0; ::; 0)

such that �j(x̂1; ::; x̂n) = 0; and @�j(x̂1; ::; x̂n)=@xj < 0 for all j 2 f1; ::; ng:

We will use this action pro�le (x̂1; ::; x̂n) in the following proposition.

Proposition 2. Under Assumption 1; an action pro�le x = (x1; ::; xn) is BF if �i(x) � 0 for all

i 2 N; and any of the following conditions hold.

(i) There is only one active �rm, i. For this �rm xi � x̂i;
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(ii) There are at least two active �rms. For all active �rms; �i(x1; ::; xn) = 0 and @�i(x1; ::; xn)=@xi <

0; for all inactive �rms, �i(�xi; x�i) < 0 for all �xi > 0:

Proof. Step 1. We show �rst that no action pro�le (x1; :::; xn) such that at least two �rms

are active and at least one has strictly positive pro�ts is BF:

Without lost of generality, suppose that �rm 1 and 2 are active, and �1(x1; ::; xn) > 0. If

�2(x1; ::; xn) = 0; then AV C1(x1) < AV C2(x2): If �2(x1; ::; xn) > 0; suppose w.l.o.g. that

AV C1(x1) � AV C2(x2): Let y > x1 be such that �1(y; x2; ::; xn) = 0; by Assumption 1, y ex-

ist. If �rm 1 increases its production from x1 to y; the price will be equal to the average cost of

y; and since the average cost is decreasing, AV C1(y) < AV C1(x1): Since AV C1(x1) � AV C2(x2);

�rm 2 is bankrupt.

Step 1 tells us that only action pro�les such that all �rms have zero pro�ts or action pro�les for

which only one �rm has positive pro�ts and all others are not active can be BF:

Step 2. We show that an action pro�le (x1; :::; xn); such that for all i 2 f1; :::; ng; �i(x1; ::; xn) = 0;

with at least two active �rms and such that @�i(x1 + ::+ xn)=@xi � 0 for some of the active �rms,

is not BF:

Suppose that the �rm with the above characteristics is �rm 1: Since @�i(x1+ ::+xn)=@xi � 0; �rm

1 can slightly increase its output and obtain non negative pro�ts. Since the price will decrease, all

other active �rms will be bankrupt.

Step 3. We show that an action pro�le (x1; :::; xn); such that for all i 2 f1; :::; ng; �i(x1; ::; xn) = 0;

with at least two active �rms such that for all active �rms @�i(x1+ ::+xn)=@xi < 0; and such that

for at least one inactive �rm j there exist �xj > 0 such that �j(�xj ; x�j) � 0; cannot be BF:

If this were the case, the inactive �rm j could produce �xj and retain non negative pro�ts. Since

the price will decrease, all active �rms will be bankrupted.

Step 4. We show that the action pro�les with at least two active �rms such that for all i 2

f1; 2; :::; ng, �i(x1; ::; xn) = 0; for all active �rms @�i(x1; ::; xn)=@xi < 0, and for all inactive �rms

�i(�xi; x�i) < 0 for all �xi > 0, are BF:

Clearly, inactive �rms cannot increase production without bankrupting themselves. Active �rms

can only bankrupt other active �rms by increasing their production, but since @�i(x1; ::; xn)=@xi < 0

and pro�ts are concave; this will also bankrupt them.

Step 5. We show that an action pro�le with only one active �rm and such that xi < x̂i is not BF:

10



Suppose that an inactive �rm j produces x�j 6= 0 such that x�j + xi = x̂1 + ::: + x̂n: Since xi < x̂i,

x�j > x̂j : Since average cost is decreasing AV Cj(x
�
j ) < AV Cj(x̂j); and thus �j(0; ::; xi; 0; ::; x

�
j ) > 0:

Since p(x�j+xi) = p(x̂1+::+x̂n); and xi < x̂i; p(x
�
j+xi)�AV Ci(xi) < p(x̂1+::+x̂n)�AV Ci(x̂i) = 0;

which implies that �rm i is bankrupt.

Step 6. Finally, we show that action pro�les with only one active �rm and such that xi � x̂i are

BF:

We show that no inactive �rm j can bankrupt the active �rm i:For this it is enough to show that

for all x�j such that �j(0; ::; xi; ::; x
�
j ; ::; 0) � 0; then �i(0; ::; xi; ::; x�j ; ::; 0) � 0:

Suppose �rst that j is such that xi <
P
k 6=j x̂k.

If x�j < x̂j ; then xi+ x
�
j <

P
k x̂k: Since xi � x̂i; p(xi+x�j )�AV Ci(xi) > p(

P
k x̂k)�AV Ci(x̂i) = 0;

which implies that �i(0; ::; xi; ::; x�j ; ::; 0) � 0:

If x�j > x̂j ; suppose that �i(0; ::; xi; ::; x
�
j ; ::; 0) = p(xi+x

�
j )�AV Ci(xi) < 0 = p(

P
k x̂k)�AV Ci(x̂i):

Since xi > x̂i; p(xi+x�j ) < p(
P
k x̂k): Thus, since p is decreasing, xi+x

�
j >

P
k x̂k: Therefore, there

exist t > 0 such that xi + x�j = x̂j + t +
P
k 6=j x̂k. Since pro�ts are concave for strictly positive

values of xj ; and �j(x̂1; ::; x̂n) = 0 with @�j(x̂1; ::; x̂n)=@xj � 0; then �j(0; ::; xi; ::; x�j ; ::; 0) < 0;

which contradicts the hypothesis. Thus, �i(0; ::; xi; ::; x�j ; ::; 0) � 0:

Suppose that j is such that xi �
P
k 6=j x̂k.

First, we show that x�j � x̂j : If x�j > x̂j ; given that xi �
P
k 6=j x̂k; then xi+ x�j >

Pn
k=1 x̂k;

but by the de�nition of (x̂1; ::; x̂n) and given that pro�ts are concave for strictly positive val-

ues of xj , �j(x�j ; x�j) will be negative. Thus x�j � x̂j : Therefore AV Cj(x�j ) � AV Cj(x̂j) =

p(x̂1 + :: + x̂n) which implies that p(x̂1 + :: + x̂n) � p(xi+ x�j ); and given that xi � x̂i; it fol-

lows that p(xi + x�j )�AV Ci(xi) � p(x̂1 + ::+ x̂n)�AV Ci(x̂i) = 0:

The above steps prove that the BF action pro�les are those described in (i) and (ii)

Notice that the point (B1; B2) in Example 3 corresponds to the outputs described in part (ii)

in Proposition 2. The outputs in part (i) correspond to those in Example 3 in which one of the

�rms is inactive and the other �rm produces, at least, the corresponding Bi.

Proposition 2 can be easily adapted to the case in which �rms have sunk costs, i.e. c(0) = k. In

this case in any BF action pro�le all �rms must be active, otherwise they are bankrupt. Therefore

the set of BF action pro�les reduces to those in part (ii) in Proposition 2 (point B in Figure 3).
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3. Long-Run Competition with Bankruptcy

In this section we consider a dynamic game with an in�nite horizon in which �rms can be bankrupt.

We identify conditions under which such dynamic competition leads to BF allocations as de�ned

in the previous section.

Each �rm, say i, has an action space denoted by Si that can be interpreted as the output, price,

etc. set by this �rm. In each period, say t, each �rm chooses an action sti:

The payo¤s obtained by �rm i in period t are denoted by �i(st) where st 2 �ni=1Si � S is the

tuple of actions played in period t = 1; 2; ::::; � ; :::. Firms cannot accumulate pro�ts, and hence

they become bankrupt as long as they have negative pro�ts in a period. If a �rm disappears from

the game in subsequent periods, this �rm is supposed to take an action �si which corresponds to

no action (i.e. zero output or a price for which demand is always zero). Formally, if �i(st) < 0;

�i(s
t+r) = 0; and st+ri = �si for all r = 1; 2; :::; . Let � 2 [0; 1] be the common discount factor.

Payo¤s for the game for �rm i are Pi = (1� �)
P1
t=0 �

t�i(s
t). The continuation payo¤ in period t

is given by P ti = (1� �)
P1
s=0 �

s�i(s
t+s):

We start this section with a very simple observation. Let (sN1 ; s
N
2 ; :::::::s

N
n ) be a list of actions

that is an NE of the static game, and �Ni be the pro�ts obtained by i in an NE of the one-shot

game. Then we have the following:

Observation. Assume that the actions corresponding to a one shot NE are BF . Then:

(i) The allocation corresponding to this NE can be sustained as an SPNE of the dynamic game for

any �:

(ii) When � tends to 1, any sequence of action pro�les that are BF and yield pro�ts larger than �Ni

can be sustained as an SPNE.

Proof. (i) From Fudenberg and Tirole (1991, p. 149) if (sN1 ; s
N
2 ; :::; s

N
n ) is an NE of the static

game, then the open-loop strategies ��i = (sNi ; s
N
i ; :::::::s

N
i ; ::::) i = 1; 2; :::; n are an SPNE of the

repeated game when there are no bankruptcy considerations. Since no player is bankrupt in these

actions, the strategies indeed conform to an SPNE of the dynamic game.

(ii) Let (~s1; ~s2; :::; ~st; ::::) be the sequence of action pro�les with the desired properties. Consider the

following strategy for a generic player, say i. At time 1 play the action ~s1i . At time � = 2; 3; :::; t; :::if

the history only includes actions pro�les (~s1; ~s2; :::; ~s��1) play ~s�i . In any other case play s
N
i . It is

clear that such strategies yield the desired sequence of actions. In addition, by the usual reasoning

12



such strategies are an SPNE when � is su¢ ciently close to one.

The above observation requires that the set of BF actions and the NE of the static game have

a non-empty intersection. For instance, in Example 1 when the two �rms are di¤erent, �rm 2

does not produce in the Cournot equilibrium so this equilibrium is BF. In Example 2, Cournot

equilibrium outputs are (2:5; 2:5) and thus they are BF.4

Our �rst result corresponds to an asymptotic result for two �rms which is independent on both

demand and costs conditions. The result states that, when � is su¢ ciently close to one, any NE of

the dynamic game yields BF action pro�les in each period. Denoting monopoly pro�ts for �rm i

as �Mi , we have the following:

Proposition 3. Let n = 2. Suppose that (s11; s
1
2; :::; s

t
1; s

t
2; ::::) is a sequence of actions yielded by

an NE such that there is an � > 0 with �i(st) + � � �Mi for all t = 1; 2; :::; i = 1; 2. Then, when �

tends to 1; (st1; s
t
2) is BF for all t.

Proof. Suppose that in period t, (st1; s
t
2) is not BF: Thus, one �rm can bankrupt the other.

Suppose, without loss of generality, it is �rm 2. Consider the following strategy for �rm 2. In period

t choose an action ~s2, that drives �rm 1 into bankruptcy and choose the output corresponding to

monopoly thereafter. In this case, the continuation payo¤ for �rm 2 is

(1� �)(�2(st1; ~s2) + ��M2 + �2�M2 + ::::): (3.1)

The continuation payo¤ at t for the sequence (s11; s
1
2; :::; s

t
1; s

t
2; ::::) is:

(1� �)(�2(st) + ��2(st+1) + �2�2(st+2) + ::::): (3.2)

By the de�nition of an NE,

�2(s
t) + ��2(s

t+1) + �2�2(s
t+2) + :::: � �2(st1; ~s2) + ��M2 + �2�M2 + :::: (3.3)

or

�2(s
t)� �2(st1; ~s2) � �(�M2 � �2(st+1)) + �2(�M2 � �2(st+2)) + :::: � ��+ �2�+ :::: = �

�

1� � : (3.4)

Clearly, when � ! 1, the above inequality is impossible, contradicting that we were in an NE.

4More general conditions under which NE and BE have a non-empty intersection are available under request.
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This result can be extended to n �rms in the following sense. For a su¢ ciently large �; in an

NE no �rm can drive to bankruptcy all other �rms with an action as long as for all �rms payo¤s in

the NE are less than the monopoly payo¤. However, the generalization of Proposition 3 for n > 2

is not possible. The di¢ culty is that, after, say, �rm i is driven bankrupt by an action of �rm j,

the strategies of the other �rms can be anything. The following example shows that when n > 2 it

is possible to sustain as SPNE allocations that are not BF.

Example 4. Let us consider a market with three �rms and an inverse demand function p(
P3
i=1 xi) =

a �
P3
i=1 xi. Firms have constant average cost such that c1 = c2 < c3 with a > c1 and c3 >

(2c1 + a)=3. The best reply functions are:

xi = maxf0;
a� ci �

P
i6=j xj

2
g; i = 1; 2; 3. (3.5)

The unique Cournot equilibrium is xC1 = x
C
2 =

a�c1
3 and xC3 = 0.

Now suppose that �rms 1 and 2 collude and maximize their joint pro�ts taking into account the

best reply of �rm 3. Thus, denoting z � x1+x2; the equilibrium is found by max(a� z�x3� c1)z

over (3.5) for i = 3 or max(a� z + c3 � 2c1)z. This yields

xJ1 = x
J
2 =

a� 2c1 + c3
6

; xJ3 =
a� 2c3 + c1

3
: (3.6)

Thus, assuming (a + c1)=2 > c3; �rm 3 produces a positive output in the collusive outcome.

Assuming also that (a+ c3� 2c1) >
p
2(a� c1); 5 guarantees that in this outcome the pro�ts of all

�rms are strictly larger than in the Cournot equilibrium.

Now consider the following strategies: x1i = x
J
i i = 1; 2; 3. If x

t�r
i = xJi for all r 2 f1; 2; ::; t � 1g

and i 2 f1; 2; 3g; then xti = xJi : Otherwise xti = xCi .

For � su¢ ciently close to 1, the previous strategies constitute an SPNE that generates actions

xti = x
J
i for all t = 1; 2; :::; T; ::: and i = 1; 2; 3. The proof is virtually identical to that for observation

3.

The previous example shatters our hope of extending Proposition 3 to n > 2. Thus, in what

follows we turn to characterize Nash equilibria under di¤erent assumptions on the technology. This

additional information will provide us with important clues for characterizing the equilibrium set.
5Note that the conditions (2c1 + a)=3 < c3 < (a+ c1)=2 and (a+ c3 � 2c1) >

p
2(a� c1) are compatible for some

values of the parameters. In particular for c1 = 0; c3 = 4; 5 and a = 10:
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3.1. Dynamics with Increasing Average Cost

We begin by considering the case of Increasing Average Cost under the following extra assumption.6

Assumption 2. All �rms have an increasing average cost and product is homogeneous, and

for any subset S � N; there is a unique (x̂1; x̂2; :::; x̂s) with x̂i 6= 0 for all i 2 S such that

�i(x̂1; x̂2; :::; x̂s) = 0 for all i 2 S:

It is easy to �nd su¢ cient conditions on demand and cost functions such that Assumption 2

holds. In what follows, whenever we use the notation (x̂1; x̂2; :::; x̂s) for any S we refer to the vector

described in the Assumption 2. We now adapt the standard de�nition of a minimax payo¤ to the

case in which actions are constrained to be BF:

We denote by x�i 2 Rn�1+ a vector of actions for each �rms except �rm i: Let B�i be the set

of actions x�i such that there exist an action for �rm i such that (xi; x�i) is BF (since the set of

BF action pro�les is not empty, this set is well de�ned). For each x�i 2 B�i; let Bi(x�i) = fxi j

(xi; x�i) is BFg: The minimax BF payo¤ for �rm i is de�ned as:

�im = min
x�i2B�i

max
xi2Bi(x�i)

�i(xi; x�i): (3.7)

The following lemma gives us a handier expression for the minimax BF payo¤ under Assumption

2.

Lemma 1. Under Assumption 2, the minimax BF payo¤ is

�im = max
xi2[0;x̂i]

�i(xi; x̂�i); (3.8)

where (x̂i; x̂�i) >> (0; 0) is such that �j(x̂i; x̂�i) = 0 for all j:

Proof. Since the payo¤ of �rm i is a¤ected by the aggregate output of the other �rms but

not by which �rm is producing it, the worse situation for �rm i in the BF set is the one with the

maximal aggregate output in the set B�i: Note that for all x�i 2 B�i �rm i cannot bankrupt any

other �rm. We denote by �B�i the set of all pairs x�i such that �rm i cannot bankrupt any of the

other �rms: Notice that B�i � �B�i: The set �B�i is characterized by the following inequalities:

�j(�xi; x�i) � 0; for all j 6= i; (3.9)

6The case of constant returns is the boundary between increasing and decreasing average cost curves. Thus this

case is indeed exceptional and we will devote no attention to it.
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where �xi = �xi(x�i) > 0 is such that

�i(�xi; x�i) = 0: (3.10)

The set �B�i is compact. Thus, the maxx�i2 �B�i
X

j 6=i
xj exist. The maximum is reached at x̂�i >>

0 such that �j(x̂i; x̂�i) = 0 for all j: By Assumption 2, (x̂i; x̂�i) is well de�ned and is a BF action

pro�le. Thus (x̂i; x̂�i) 2 B�i: Therefore, x̂�i = argmaxx�i2B�i
X

j 6=i
xj : Since Bi(x̂�i) = [0; x̂i];

the minimax BF payo¤ is reduced to:

�im = max
xi2[0;x̂i]

�i(xi; x̂�i); (3.11)

and the proof is completed.

In the next proposition we show that, for a su¢ ciently large �; no SPNE of the dynamic game

can give any �rm a payo¤ lower than its minimax BF payo¤. To formally introduce the result, we

need the two following lemmas. The proofs are in the Appendix.

Lemma 2. Let (x1; ::; xn) be such that all �rms have non negative pro�ts. If
X

j 6=i
xj >

X
j 6=i
x̂j ;

then �rm i can bankrupt some of the other �rms.

Lemma 3. Let S and S0 be such that S � S0; and let k 2 S: The minimax BF payo¤ for �rm k in

the economy S (�Skm) is larger than the minimax BF payo¤ for �rm k in the economy S0 (�S
0
km):

Proposition 4. There exists �0 2 (0; 1) such that for all � 2 (�0; 1), �i < �im cannot be sustained

in any SPNE.

Proof. We prove the proposition by induction on the number of �rms. We start by showing

that the statement is true when there are only two �rms in the market.

With two �rms, the minimax BF payo¤ is

�im = min
xj2[0;x̂j ]

max
xi2[0;x̂i]

�i(xi; xj): (3.12)

Thus, �rm i could have achieved at least �im if xtj 2 [0; x̂j ] for all t; irrespective of �. Therefore, if

�i < �im happens in equilibrium, xtj > x̂j must hold for some t. We show that if this is the case,

the continuation payo¤ for i at t in equilibrium; P ti ; must be such that P
t
i � ��Mi ; where �

M
i is

the monopoly pro�t. Suppose that P ti < ��
M
i ; since x

t
j > x̂j , �rm i can bankrupt �rm j retaining

non-negative pro�ts, and can achieve a monopoly pro�t in every period from t + 1:Under this
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situation, the continuation payo¤ for �rm i will be greater than ��Mi : However, ��
M
i > P ti , which

contradicts the notion that we are in equilibrium. Thus, P ti � ��Mi : Since ��Mi ! �Mi as � ! 1;

and �im < �Mi ; �i must exceed �im at some point as � increases, which concludes the proof for

n = 2.

Suppose that the proposition is true for n� 1 �rms. We show that it is true for n �rms.

By 3.8, �rm i could have achieved at least �im if
P
j 6=i x

t
j �

P
j 6=i x̂j for all t irrespective of �.

Therefore, if �i < �im occurs in equilibrium,
P
j 6=i x

t
j >

P
j 6=i x̂j for some t, and if this is the

case, at t �rm i could bankrupt some other �rm. Suppose, without lost of generality, that �rm i

can bankrupt �rm k: Since we start with an equilibrium, whatever the strategies that support this

equilibrium are, they should be such that in the subgame in which all �rms but k survive, they

constitute a Nash equilibrium. We denote by �N�ki a possible payo¤ that �rm i can obtain in the

equilibrium of the subgame with all �rms but k: Let �N�ki the set of all those possible payo¤s.

Let us see that the continuation payo¤ for i at t in equilibrium; P ti ; must be such that P
t
i � ��N�ki

for some �N�ki 2 �N�ki . Suppose that P ti < ��
N�k
i for all �N�ki 2 �N�ki : If this is the case, �rm i

can deviate in period t by bankrupting �rm k and retaining non-negative pro�ts and conforming

with the initial strategy thereafter. Thus, �rm i can achieve �N�ki pro�ts in every period from

t+ 1:Under this situation, the continuation payo¤ for �rm i will be greater that ��N�ki : However,

��N�ki > P ti , which contradicts the notion that we are in equilibrium. Thus, P
t
i � ��N�ki for some

�N�ki 2 �N�ki : By the induction hypothesis, for � su¢ ciently large, �N�ki � �N�kim ; where �N�kim

is the minimax BF payo¤ when the �rms in the market are N 8fkg. Since ��N�kim ! �N�kim and

�N�kim > �Nim; �i must exceed �
N
im at some point as � increases, which concludes the proof.

Next we give su¢ cient conditions for the existence of an SPNE in our framework. We say that

�i is an individually rational BF payo¤ if �i > �im: An individually rational BF vector payo¤

(�i)i2N is feasible if there exist a BF action pro�le (x1; :::; xn) such that �i = �i(x1; x2; ::; xn) for

all i 2 N:

Proposition 5. Let � = (�i)i2N be a feasible and individually rational BF payo¤ vector. Then,

there exists �0 such that for all � 2 (�0; 1), � is the average payo¤s in some SPNE.

Proof. The proof is given by constructing an equilibrium which is originally proposed by

Fudenberg and Maskin (1986). Let (�i)i2N be feasible and individually rational BF payo¤ vector.
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By the de�nition of feasibility, there is a BF action pro�le (x1; ::; xn) such that

�i = �i(x1; ::; xn) for i 2 N: (3.13)

Suppose each �rm takes this xi, i 2 N in each period if no deviation has occurred, but all i 2 N

choose x̂i, for T periods once one of them unilaterally deviates from the equilibrium path. If no one

deviates during these T periods, then �rms go back to the original path. Otherwise, if one of them

deviates, then �rms restart this phase for T more periods. We prove that this strategy actually

constitutes an SPNE.

First consider a deviation from the equilibrium path. Suppose �rm i takes x0i 6= xi in some period,

say period t. By the one-stage-deviation principle (e.g. Fudenberg and Tirole, 1991, p.110), a

deviation is pro�table if and only if �rm i could pro�t by deviating from the original strategy in

period t only and conforming thereafter. Therefore, �rm i can bene�t by deviation if and only if

9x0i such that

(1� �)�i(x0i; x�i) + (1� �)(� + ::+ �T )�i(x̂i; x̂�i) + �T+1�i

= (1� �)�i(x0i; x�i) + �T+1�i > �i = (1� �)(1 + � + :::+ �T )�i + �T+1�i

, (1� �)f(�i(x0i; x�i)� �i)� (� + :::+ �T )�ig > 0 (3.14)

Let �i = maxx0i �i(x
0
i; x�i)� �i and choose T such that

�i < T�i. (3.15)

Note that the left hand side of (3.14) is weakly less than

(1� �)f�i � (� + :::+ �T )�ig. (3.16)

This term is non-positive when � is close to 1. Therefore, (3.14) cannot be satis�ed for such T .

By the same argument as above, �rm i can bene�t by deviating from the mutual minmax phase if

and only if 9x00i

(1� �)�i(x00i ; x̂�i) + (1� �)(� + :::+ �T )�i(x̂i; x̂�i) + �T+1�i

> (1� �)(1 + � + :::+ �T�1)�i(x̂i; x̂�i) + �T�i, (3.17)

which can be written as:

�i(x
00
i ; x̂�i) > �

T�i: (3.18)
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Note that �i(x00i ; x̂�i) � maxxi2[0;x̂i] �i(xi; x̂�i) = �im: Since �i > �im by assumption. This implies

that (3.18) never holds when � is close to 1.

Thus, both on and o¤ the equilibrium paths, there is no pro�table deviation when � is su¢ ciently

close to 1. Since we can always construct the above equilibrium for arbitrary � as long as it is a

feasible and individually rational BF payo¤ vector, the proof is complete.

Note that Propositions 3, 4 and 5, (almost) characterize the SPNE set for two �rms and increas-

ing average costs.7 However if n > 2 we can support non BF actions as equilibria as long as they

yield payo¤s above the minimax BF payo¤. In the following proposition we give conditions for this

to occur. For simplicity, we work out the case of n = 3; even though our results can be extended

to any n > 3 at cost of introducing some additional notation. We de�ne �ijim as the minimax BF

payo¤ of �rm i when only �rms i and j are in the market.

Proposition 6. Let (x1; x2; x3) be a non BF action pro�le such that �i(x1; x2; x3) > �im for all

i 2 f1; 2; 3g; and �i(x1; x2; x3) > �ijim for all i; j 2 f1; 2; 3g: Then, there exists �0 such that for all

� 2 (�0; 1), � = (�i)i2f1;2;3g is the average payo¤s in some SPNE.

Proof. Suppose, without loss of generality, that only �rm 3 can be bankrupted. Suppose each

�rm takes xi, i 2 f1; 2; 3g in each period but if one of then deviates such that no �rm is bankrupt,

then �rms start to choose x̂Si ; i 2 S = f1; 2; 3g for T periods . If no one deviates during these T

periods, then �rms go back to the original path. Otherwise, if one of them deviates in one of this

T periods, then �rms restart this phase for T more periods. If one �rm deviates by bankrupting

�rm 3, then �rm 1 and 2 chose x̂S0i , i 2 S0 = f1; 2g for T periods. If no one deviates during

this phase, then �rms chose (�x1; �x2) a BF action pro�le in the market with those two �rms such

�i(x1; x2; x3) > �i(�x1; �x2) > �ijim: If one of them deviates from this phase, then �rms restart this

phase for T more periods.

We show that this strategy actually constitutes an SPNE.

First consider the deviation on the equilibrium path when no �rm is bankrupted. Suppose �rm i

takes x0i 6= xi in some period, say period t such that this �rm does not bankrupt any other �rm.

By the one-stage-deviation principle, deviation is pro�table if and only if �rm i could pro�t by

deviating from the original strategy in period t only and conforming thereafter. Therefore, �rm i

7Only the points in the boundary are not considered in these propositions.
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can bene�t by deviation if and only if 9x0i such that

(1� �)�i(x0i; xj ; xk) + (1� �)(� + ::+ �T )�i(x̂Si ; x̂Sj ; x̂Sk ) + �T+1�i

= (1� �)�i(x0i; xj ; xk) + �T+1�i > �i = (1� �)(1 + � + :::+ �T )�i + �T+1�i

, (1� �)f(�i(x0i; xj ; xk)� �i)� (� + :::+ �T )�ig > 0: (3.19)

Let �i = maxx0i �i(x
0
i; xj ; xk)� �i and choose T such that

�i < T�i. (3.20)

Note that the left hand side of (3.19) is weakly less than

(1� �)f�i � (� + :::+ �T )�ig. (3.21)

This term is non-positive when � is close to 1. Therefore, (3.19) cannot be satis�ed for such T .

Deviations from the mutual minmax phase cannot bankrupt any �rm because (x̂S1 ; x̂
S
2 ; x̂

S
3 ) is BF:

Thus, by the same argument as above, �rm i can bene�t by deviating from the mutual minmax

phase if and only if 9x00i

(1� �)�i(x00i ; x̂Sj ; x̂Sk ) + (1� �)(� + :::+ �T )�i(x̂Si ; x̂Sj ; x̂Sk ) + �T+1�i

> (1� �)(1 + � + :::+ �T�1)�i(x̂Si ; x̂Sj ; x̂Sk ) + �T�i, (3.22)

which can be written as:

�i(x
00
i ; x̂

S
j ; x̂

S
k ) > �

T�i: (3.23)

Note that �i(x00i ; x̂
S
j ; x̂

S
k ) � maxxi2[0;x̂i] �i(xi; x̂

S
j ; x̂

S
k ) = �im: Since �i > �im by assumption. This

implies that (3.23) never holds when � is close to 1.

Now, consider deviations whereby one �rm can bankrupt �rm 3. Suppose this �rm is �rm 1. Firm

1 can bene�t by deviating if and only if 9x01 that bankrupt �rm 3 and such that

(1� �)�1(x01; x2; x3) + (1� �)(� + ::+ �T )�1(x̂S
0
1 ; x̂

S0
2 ) + �

T+1�1(�x1; �x2)

> �i = (1� �)(1 + � + :::+ �T )�i + �T+1�i: (3.24)
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Since �i > �1(�x1; �x2): The above inequality is true if and only if

(1� �)�1(x01; x2; x3) + (1� �)(� + ::+ �T )�1(x̂S
0
1 ; x̂

S0
2 )

> (1� �)(1 + � + :::+ �T )�i:

, (1� �)f(�i(x0i; xj ; xk)� �i)� (� + :::+ �T )�ig > 0: (3.25)

However, bankrupting a �rm always has a cost, and therefore, �i(x0i; xj ; xk) � �i < 0: Thus, the

above inequality can never hold.

Deviations from the mutual minmax phase with two �rms cannot bankrupt any �rm because

(x̂S
0
1 ; x̂

S0
2 ) is BF: Thus, by the same argument as above, �rm 1 (the same argument applies to �rm

2) can bene�t by deviating from the mutual minmax phase if and only if 9x00i

(1� �)�1(x001; x̂S
0
2 ) + (1� �)(� + :::+ �T )�1(x̂S

0
1 ; x̂

S0
2 ) + �

T+1�1(�x1; �x2)

> (1� �)(1 + � + :::+ �T�1)�1(x̂S
0
1 ; x̂

S0
2 ) + �

T�1(�x1; �x2):

The previous inequality can be written as:

�1(x
00
1; x̂

S0
2 ) > �

T�1(�x1; �x2): (3.26)

Note that �1(x00i ; x̂
S0
2 ) � maxx12[0;x̂S01 ] �1(x1; x̂

S0
2 ) = �

12
1m: Since �1(�x1; �x2) > �

12
1m, (3.26) never holds

when � is closed to one.

Thus, both on and o¤ the equilibrium paths, there is no pro�table deviation when � is su¢ ciently

close to 1.

We note that when �rms are required to make vi pro�ts in order to be not bankrupted and

vi < 0 this vi can be considered as a part of the cost. In this case, even if we have constant returns

to scale, the transformed cost function displays increasing average costs. We now work out an

example for two �rms with identical constant average cost but di¤erent �nancial constraints. This

special case will allow us to illustrate how the set of feasible and individually rational BF payo¤

vectors changes with the �nancial constraints, and we show that, in some situations, the symmetric

collusive output cannot be sustained as an equilibrium of the dynamic game.

Example 5. Let n = 2; p = (3� x1 � x2); c = 1: Let � be the set of feasible individually rational

bankruptcy free payo¤ vectors. In Figure 4, 5,6 and 7 we represent the set � under di¤erent

scenarios. In the �gures, the interior dot denotes the payo¤ for the static Cournot equilibrium,

21



�1 = �2 = 4=9. The dot on the line denotes the payo¤ in a symmetric collusive outcome whereby

�rms set a monopoly price and equally divide the share, �1 = �2 = 1=2:

(a) If there is no �nancial constraints, � is the set of feasible individually rational payo¤ vectors.

� = f(�1; �2) j �1 > 0; �2 > 0; �1 + �2 � 1g: (3.27)

(1/2, 1/2)

(4/9, 4/9)

0 1

1

π 2

π 1

Figure 4

(b) If v1 = v2 = �0:5

� = f(�1; �2) j �1 > �1m; �2 > �2m; �1 + �2 � 1g: (3.28)

0 1

1

π 2

π 1

Figure 5

(c) If v1 = �0:25; v2 = �1

� = f(�1; �2) j �1 > �1m; �2 > �2m; �1 + �2 � 1g: (3.29)
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0 1

1

π 2

π 1

Figure 6

(d) If v1 = �0:01; v2 = �0:2

� = f(�1; �2) j �1 > �1m; �2 > �2m; �1 + �2 � 1g: (3.30)

0 1

1

π 2

π 1

Figure 7

To summarize, Propositions 4 and 5 point out that introduction of �nancial constraints shrinks

the set of equilibrium payo¤s. Example 5 shows that, under asymmetric �nancial constraints, the

set of equilibrium payo¤s shrinks in favor of a �rm that has a larger �nancial budget.
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3.2. Dynamics with Decreasing Average Cost

We address the case of decreasing average costs. We recall that under Assumption 1, only two kind

of action pro�le are BF . Action pro�les in which there is only one active �rm (i.e. those under the

heading (i) in Proposition 2) and action pro�les in which at least two �rms are active and earn zero

pro�ts (i.e. those under the heading (ii) in Proposition 2). In the following proposition we show

that the BF action pro�les with at least two active �rms cannot be supported by an NE and we

give conditions under which BF action pro�les with only one active �rm can be supported as NE.

Proposition 7. Under Assumption 1, a BF action pro�le ~x = (~x1; ~x2; :::; ~xn) can be supported as

an NE i¤: (i) There is only one �rm, say j, with ~xj > 0. (ii) ~xj limits the entry of all other �rms.

(iii) ~xj is a monopoly output for �rm j.

Proof. Su¢ ciency. Consider open loop strategies in which all �rms play (~x1; ~x2; :::; ~xn) in

each period. Since ~xj limits the entry of all other �rms and it is a monopoly output (~x1; ~x2; :::; ~xn)

is an NE of the one period game and thus these open-loop strategies form, indeed, a NE.

Necessity. Let (�1; �2; :::; �n) be a list of strategies that constitute NE and yields in each period a

BF action pro�le. Suppose that for some period t there are two �rms with positive output. Since

the action pro�le is BF; by part (ii) in Proposition 2, �i(x1; ::; xn) = 0 and @�i(x1; ::; xn)=@xi < 0 for

all active �rms. Thus, at t �rm i can reduces an " its output and produce zero in any subsequent

period. However, since @�i(x1; ::; xn)=@xi < 0; with this strategy �rm i makes positive pro�ts,

which contradicts the notion that we are in NE. Thus, in a NE, one �rm at most is active. The

possibility that in NE no �rm is active can be discarded because one �rm would enter in a period,

earn positive pro�ts and produce zero thereafter. Thus, in each period there is only one active �rm

and (i) above holds. The output of the active �rm must deter entry because otherwise a hit and

run entry by another �rm would be pro�table for this �rm, so (ii) also holds. Finally, if �rm j is

not producing a monopoly output, a one period change of output by this �rm (continuing with the

limit output thereafter) improves the pro�ts of this �rm, contradicting the notion that we are in

NE.

Our results here give some support to the idea (which underlies the concept of natural monopoly)

that under increasing returns only one �rm can survive in equilibrium. Indeed, when n = 2 this is

the only allocation that can be sustained as an SPNE.
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It remains to be shown whether non BF action pro�les can be sustained as an SPNE. Although

we do not have a general answer to this question, in the next proposition we show that action

pro�les whereby all �rms produces a positive quantity cannot be supported as NE.

Let ~x = (~x1; ~x2; :::; ~xn) denote a pro�le of outputs such that ~xi > 0 for all i.

Proposition 8. Under Assumption 1, when � is su¢ ciently close to 1, there is no NE strategy

pro�le, fstgt; such that there is an � > 0 with �i(st) + � � �Mi in each t; yielding ~x in a period.

Proof. Suppose there is such strategy pro�le. Let j be the �rm such that AV Cj(~xj) �

AV Ci(~xi) for all i. Clearly all pro�ts at ~x must be non-negative.

First, let �j(~xj ; ~x�j) > 0. Let y be such that �j(~xj + y; ~x�j) = 0. The existence of y is guaranteed

by Assumption 1. Now we have that

p(y +
nP
i
~xi) = AV Cj(~xj + y) < AV Cj(~xj) � AV Ci(~xi); (3.31)

so all �rms except j are ruined and j is a monopolist from this period on. For � su¢ ciently close to 1,

this unilateral change in output increases discounted pro�ts (the same argument as for Proposition

3 can be applied here), which contradicts that the notion that we are in a NE.

Now consider the case where �j(~xj ; ~x�j) = 0. Since AV Cj(~xj) � AV Ci(~xi) for all i and to produce

zero is always an option it must be that AV Cj(~xj) = AV Ci(~xi) = p(
Pn
i=1 ~xi) for all i. If ~x is BF we

have shown that it cannot be supported as an NE. If the allocation is not BF, this means that 9k and

a xk such that with the resultant price, p(xk+
P
i6=k ~xi), at least one �rm is bankrupted. However,

since AV Cj(~xj) = AV Ci(~xi) i; j 6= k this means that all �rms except k can be bankrupted. Thus

when � is su¢ ciently close to 1, �rm k has incentives to choose xk and to be a monopolist from

this period on. Again, the same argument as for Proposition 3 can be applied here to show that,

in this case, the deviation increases discounted pro�ts which contradicts the notion that we are in

an NE.

The question arises as to whether the bound on the number of active �rms in the previous result

is tight. The following example shows that when n = 3 there are SPNE with two active �rms.

Example 6. Suppose that there are three �rms with constant marginal costs equal to zero, a �xed

cost K = 1000, and an inverse demand function p(
P3
i=1 xi) = 100�

P3
i=1 xi. Consider the following

strategies8.
8These strategies are Markovian in the sense that they only depend on the state, de�ned as the set of �rms.
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(S1) For �rm 1: in the �rst period, produce zero output. Thereafter, if �rms 2 and 3 exists, produce

zero output. If, at least, one of these two �rms has disappeared, produce the monopoly output.

(S2) For �rms 2 and 3: in the �rst period, produce the Cournot duopoly output. Thereafter,

if the three �rms exists, produce the Cournot duopoly output. If one of these two �rms has

disappeared and �rm 1 exists, the remaining �rm produces zero output. If one of these two �rms

has disappeared and �rm 1 does not exists, produce the monopoly output. If �rm 2 and 3 exist

but �rm 1 has disappeared, then �rm 2 produces the monopoly output and �rm 3 produces cero

output.

To prove that (S1) and (S2) yield an SPNE, we �rst note that in this example the following two

conditions hold:

(C1) When �rms 2 and 3 produce the Cournot duopoly, they obtain positive pro�ts and the best

reply by �rm 1 is zero. Furthermore, �rm 1 cannot bankrupt either �rm 2 or �rm 3. Note, however,

that the Cournot duopoly is not BF .

(C2) When one �rm produces the monopoly output, this �rm obtains non-negative pro�ts and

limits the entry of the other �rms.

By the one-stage-deviation principle, a deviation is pro�table if and only if �rm i can pro�t by

deviating from the original strategy in period t only and conforming thereafter.

We �rst show that there is no pro�table deviation from any subgame in which the three �rms exist.

Clearly, since �rm 1 cannot bankrupt �rm 2 or �rm 3 when those �rms are producing the Cournot

duopoly output and the best reply of �rm 1 is to produce cero, no deviation can give �rm 1 a

better payo¤. Thus, �rm 1 has no incentives to deviate in these subgames. Firms 2 and 3 are

completely symmetric in the subgames, so we show that �rm 2 has no incentives to deviate; the

same argument applies to �rm 3. Firm 2 has no incentive to kill �rm 3 when they are in a duopoly

because it will not enjoy any pro�ts thereafter. Furthermore, �rm 2 has not incentives to deviate

from the duopoly outcome when the three �rms exist.

Second, we show that there is no pro�table deviation from any subgame in which two �rms exist.

When only two �rms exist, one produces the monopoly output, which limits the entry of the other

�rm, so no pro�table deviation exists.

Finally, in subgames in which only one �rm exists, there are not pro�table deviations since that

�rm is producing the monopoly output.
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4. Final Remarks

In this paper we have developed a theory of dynamic competition in which �rms may bankrupt

each other. We focussed on allocations that are BF in which a �rm can bankrupt others only by

bankrupting itself. We have characterized BF allocations under decreasing, constant and increasing

returns. Finally, we have shown how BF allocations can be sustained as Nash equilibria in a dynamic

game. Our concept of BF allowed us to understand the structure of Nash equilibria in the dynamic

game. When there are two �rms or increasing average costs, BF plays the leading role when

players are very patient. However we have shown that allocation other than BF can be sustained

as subgame perfect Nash equilibria.9

Our results are obtained at the cost of making several simpli�cations to make the model

tractable. For instance, we did not consider coalitions of �rms in the de�nition of BF alloca-

tions or re�nements of SPNE (such as renegotiation-proof) to get rid of some equilibria. It is likely

that these extensions will not qualitatively alter the nature of our results. However, other issues

neglected here might a¤ect our conclusions signi�cantly. Among these the following might be of

particular importance.

Mixed strategies

Throughout the paper we have assumed that �rms only use pure strategies, but a good way of

avoiding bankruptcy might be to use mixed strategies as boxers use random movements to avoid

easy hits. We argue that when n = 2, if the actions played in equilibrium involve a randomization

and one of these actions is not BF, for � close enough to 1, the best strategy of the other �rm consists

in choosing an action that will bankrupt this �rm. This is because sooner or later the probability

that the action which is not BF is played is close to 1 so this �rm will be ruined and the predating

�rm will enjoy monopoly pro�ts forever. Thus, in this case the BF set gives us a indication of which

type of actions will arise in equilibria, regardless of what kind of strategy is played by the agents.

However, in other cases the introduction of mixed strategies might substantially enlarge the set of

allocations that might be supported as equilibria of the dynamic game.

No accumulation

In this paper we focused on actions that bankrupt other �rms, but we did not consider the other

9BF allocations may also be relevant in other circumstances such as when managers are so risk-averse that they

would never choose an allocation by which they can be driven out of business.
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side of bankruptcy, namely the funds that might support or deter aggressive strategies (the "deep

pocket" argument). Our result when n = 2 might survive when accumulation is considered. Indeed,

suppose as a �rst approximation that in each period the �rms transfer an exogenous quantity of

their wealth to next period. Then in each period we can de�ne a BF set that depends on the wealth

accumulated by each �rm. If in a period the action chosen by, say, �rm 1, is not BF, �rm 2 may get

rid of �rm 1 and enjoy monopoly pro�ts forever. When � is su¢ ciently close to 1, this is optimal

for �rm 2. In other cases, accumulation of pro�ts might play an important role shaping the NE set

as in the model of Rosenthal and Rubinstein (1984).10

Credit

If credit is given on the basis of past performance, the rede�nition of the BF set sketched in the

previous paragraph can be applied here and credits can be incorporated into the model. However,

if credit is given on the basis of future performance, we have a problem because future performance

also depends on credit (via the BF constraints), which makes this problem extremely complex.

This points to a deep conceptual problem about credit in oligopolistic markets where �rms might

be bankrupted. This topic should be the subject of future research.

Entry

In this paper we assumed a given number of competitors. This implies that the disappearance

of a �rm does not bring a new one in the market. Of course this should not be taken literally. What

we mean is that if entry does not quickly follow it makes sense, as a �rst approximation, to analyze

the model with a given number of �rms. For instance when n = 2 and demand and costs are linear,

ruining a �rm is a good investment even if monopoly last for one period (this example is available

under request). In other cases, though, the nature of equilibria will be altered if, for instance, entry

immediately follows the ruin of a competitor as in the model of Rosenthal and Spady (1989).11

Buying Competitors

In our model, there is no option to buy a �rm. Sometimes it is argued that buying an opponent

may be a cheaper and safer strategy than ruining it. We do not deny that buying competitors

10They characterize a subset of the Nash equilibria assuming that each player regards ruin of the other player as

the best possible outcome and his own ruin as the worst possible outcome.
11They consider a prisoner�s dilemma in continuous time in a market with room for two �rms only. When a �rm

is bankrupted, this �rm is immediately replaced by a new entrant. They show that some kind of predatory behavior

can arise in equilibrium.
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plays an important role in business practices. However, we contend that under the option of buying,

ruining a competitor is irrational. First, buying competitors may be forbidden by a regulatory body

because of anticompetitive e¤ects. Second, when the owner of a �rm sells it to competitors, this

does not stop her from creating a new �rm and �nance it with the money received from selling the

old one. In other words, selling a �rm is not equivalent to a contract in which the owner commits

not to enter into a market again. Thus, bankruptcy may be the only credible way of getting rid of

a competitor. Finally, buying and ruining of competitors may complement each other because the

acquisition value may depend on the aggressiveness of the buyer in the past; see Burns (1986) for

some evidence in the American tobacco industry. Thus, it seems that a better understanding of

the mechanism of ruin might help to further enhancement of our understanding of how the buying

mechanism works in this case.

Summing up, the model presented in this paper illuminates certain aspects of the equilibrium in

oligopolistic markets in which �rms may bankrupt each other. We hope that the insights obtained

here can be used in further research in this area.

5. APPENDIX

Proof of Lemma 2. Given that
X

j 6=i
xj >

X
j 6=i
x̂j ; at least for one k; xk > x̂k . We show

that �rm i can bankrupt �rm k: Suppose, on the contrary, that this is not possible. Let ~xi be the

maximal output for �rm i such that �i(~xi; x�i) = 0:Note that ~xi 6= 0; because otherwise,
X

j 6=i
xj �X

j
x̂j and thus p(

X
j 6=i
xj) � p(

X
j
x̂j) = AV Ck(x̂k) < AV Ck(xk); which would imply negative

pro�ts for �rm k: Thus ~xi 6= 0: Then, p(~xi +
X

j 6=i
xj) = AV Ci(~xi): Since

X
j 6=i
xj >

X
j 6=i
x̂j ;

p(~xi+
X

j 6=i
x̂j) > AV Ci(~xi): Since p(x̂i+

X
j 6=i
x̂j) = AV Ci(x̂i); ~xi < x̂i: Since we have supposed

that �rm i cannot bankrupt �rm k; then p(~xi +
X

j 6=i
xj) � AV Ck(xk): However, AV Ck(xk) >

AV Ck(x̂k); and AV Ck(x̂k) = AV Ci(x̂i) > AV Ci(~xi): Thus, p(~xi +
X

j 6=i
xj) > AV Ci(~xi) in

contradiction with the de�nition of ~xi: Thus, �rm i can bankrupt �rm k:

Proof of Lemma 3. Let x̂S = (x̂Si )i2S be such that x̂
S
i 6= 0 and �i(x̂S) = 0 for all i 2 S: Let

x̂S
0
= (x̂S

0
i )i2S0 be such that x̂

S0
i 6= 0 and �i(x̂S

0
) = 0 for all i 2 S0: Note �rst that

X
i2S

x̂Si <X
i2S0

x̂S
0
i ; and since AV Ck(x̂

S0
k ) = p(

X
i2S0

x̂S
0
i ) < p(

X
i2S

x̂Si ) = AV Ck(x̂
S
k ) and average cost is
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increasing, then x̂S
0
k < x̂Sk : Thus,

X
i2S;i6=k

x̂Si <
X

i2S0;i6=k
x̂S

0
i : Therefore,

�S
0
km = max

xk2[0;x̂S
0

k ]
�k(xk;

X
i2S0;i6=k

x̂S
0
i ) < max

xk2[0;x̂S
0

k ]
�k(xk;

X
i2S;i6=k

x̂Si ) (5.1)

because pro�ts are decreasing in the sum of the outputs of the other �rms. And �nally, since

x̂S
0
k < x̂Sk ;

�S
0
km = max

xk2[0;x̂S
0

k ]
�k(xk;

X
i2S0;i6=k

x̂S
0
i ) � max

xk2[0;x̂Sk ]
�k(xk;

X
i2S;i6=k

x̂Si ) = �
S
km: (5.2)

Thus, �S
0
km < �

S
km:
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