17 research outputs found

    Qur’anic wisdom and the sustainability mind-set: deciphering the relationship

    Get PDF
    Purpose: This paper aims to examine practical wisdom from the Islamic religion elaborating on how it pertains to the sustainability mind-set. The purpose is to assess whether the Islamic and sustainability mind-sets coincide and if so, how they do. Design/methodology/approach: The first two chapters of the Holy Qur’an were divided into parts based on the divisions in the exegesis by Abu Bakr Al-Jaza’eri. Next, a qualitative content analysis of the main sustainability themes in these chapters was conducted. The first stage of the content analysis involved the collection of Qur’anic verses related to the sustainability concepts. Following that, inductive interpretive analysis was conducted in the second stage of the content analysis, where key sustainability lessons within the agreed upon Qur’anic verses were extracted. Findings: The empirical study reported in this paper reveals 10 lessons from the examined Qur’anic text that pertain to the sustainability mind-set. Each of these lessons appears to foretell the wisdom behind the sustainability mind-set. Originality/value: This study contributes to the literature on sustainability and Islam in two ways. First, the analysis results in key lessons relating to sustainability, the majority of which were not covered in existing literature. Second, the research takes a holistic approach to finding commonalities between the sustainability mind-set and the Islamic mind-set, instead of focusing on a specific aspect of sustainability such as the environment

    Analysis of Surface Temperature Trends of Global Lakes Using Satellite Remote Sensing and in Situ Observations

    Full text link
    Even though lakes make up a small percentage of the water bodies on the global land surface, lakes provide critically important ecosystem services. Unfortunately, however, several lake surface areas around the globe have been changing with many of them drastically decreasing due to climate variability and local mismanagement at the basin-scale level. Lake Surface Water Temperature (LSWT) is recognized as a critical indicator of climate change in lakes. The changes in water and the surrounding land temperatures may be an indicator of climate variability if there is consistency between changes in both temperatures. This project focuses on the application of remote sensing to investigate the changes in lake surface water temperatures and their relationship with their surrounding land cover type in a bid to identify the main driving factors of these changes. In this study, 507 global major lakes have been investigated. An analysis of temperature variation over these lakes has been conducted using daily observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) from year 2002 to 2018 over the lakes and their surrounding land areas. The rates of change of temperature for both the lakes’ water surface and their basins as well as the changes in the lakes’ surface areas were calculated. The relationship between the rates of LSWT change and other lake characteristics such as lake depth, salinity level, geographical location, and size were also investigated. Moreover, changes in the occurrence in the timing of the annual formation and disappearance of lake ice in the United States were examined. Preliminary results show that many of the lakes’ water temperatures are warming faster than their surrounding land temperatures. In addition, approximately 43.15% of the studied lakes are warming, and about 51.00% of them are cooling. Furthermore, 62.53% of the lakes are shrinking while 28.35% of them are growing. Moreover, as latitude increases, the difference between the water temperature and the air temperature increases and vice versa. More importantly, on average, there is 0.13 days per year of earlier ice out over the period of study. This study, therefore, provides insights about LSWT variability on a global scale

    Evolution of Surface Hydrology in the Sahelo-Sudanian Strip: An Updated Review

    Get PDF
    In the West African Sahel, two paradoxical hydrological behaviors have occurred during the last five decades. The first paradox was observed during the 1968–1990s ‘Great Drought’ period, during which runoff significantly increased. The second paradox appeared during the subsequent period of rainfall recovery (i.e., since the 1990s), during which the runoff coefficient continued to increase despite the general re-greening of the Sahel. This paper reviews and synthesizes the literature on the drivers of these paradoxical behaviors, focusing on recent works in the West African Sahelo/Sudanian strip, and upscaling the hydrological processes through an analysis of recent data from two representative areas of this region. This paper helps better determine the respective roles played by Land Use/Land Cover Changes (LULCC), the evolution of rainfall intensity and the occurrence of extreme rainfall events in these hydrological paradoxes. Both the literature review and recent data converge in indicating that the first Sahelian hydrological paradox was mostly driven by LULCC, while the second paradox has been caused by both LULCC and climate evolution, mainly the recent increase in rainfall intensity

    Energy Optimization for Fenestration Design: Evidence-Based Retrofitting Solution for Office Buildings in the UAE

    No full text
    With the prevalent use of large glazings, particularly in office buildings, offices receive an abundance of light and are among the largest consumers of electricity. Moreover, in an extreme hot arid climate such as in the UAE, achieving comfortable daylighting levels without increasing solar heat gain is a challenge, in which the window or fenestration design plays an essential role. This research adopts a case study of a higher education (HE) office building on the United Arab Emirates University (UAEU) campus, selected to investigate an evidence-based retrofitting solution for the west façade that can be applied in existing office buildings in the UAE in order to reduce cooling energy load as well as enhance indoor environmental quality. To achieve an evidence-based retrofitting solution, the research design built upon a comprehensive exploratory investigation that included indoor environmental quality physical monitoring and occupant satisfaction surveying. Model simulation was performed by means of DesignBuilder software to perform a single- and multiparameter sensitivity analysis for three key passive window design parameters, i.e., window-to-wall ratio, glazing type, and external shading, aimed towards minimizing annual cooling load and solar heat gain, while maintaining appropriate indoor daylight illuminance levels. The results highlight the importance of the window-to-wall ratio (WWR), as it is the single most significant parameter effecting total energy consumption and daylighting levels. The results recommend 20–30% WWR as the optimum range in the west façade. However, by utilizing high performance glazing types and external shading, equal energy savings can be achieved with a larger WWR. Double Low E tinted glazing and 0.4 projection shading overhang and side fin revealed a noteworthy reduction of energy use intensity of 14%. The study concludes with final retrofitting solutions and design recommendations that aim to contribute validated knowledge towards enhancing window performance in a hot arid climate to guide architects and stakeholders to apply a range of passive parameters towards reducing energy consumption and improving occupant comfort in office buildings

    Indoor Environmental Quality Assessment and Occupant Satisfaction: A Post-Occupancy Evaluation of a UAE University Office Building

    No full text
    As occupants spend almost 90% of their day indoors, especially in the workplaces, Indoor Environmental Quality (IEQ) plays a primary role in health and wellbeing, productivity, and building energy consumption. Adopting the IEQ and Post-Occupancy Evaluation (POE), data has been gathered from nine multilevel open offices within a university building located in Al Ain, in the United Arab Emirates (UAE) for three winter months. Physical parameters were monitored using data loggers to record the main IEQ factors. In parallel, POE questionnaires have been distributed to obtain occupants’ satisfaction with the IEQ and health-related symptoms experienced in the workspaces. The IEQ and POE data have shown slightly above or below the recommended ranges with the occupants similarly and slightly dissatisfied with the building. The thermal comfort revealed concerns with 99% of temperatures below international standards where 55% of the survey respondents reported “too cold”. The IAQ measurements showed 45% and 30% of the respondents reporting “stuffy air” and “headache” which indicated symptoms that could be tracked to other parameters or a combination of several, and the findings have been discussed in detail in this paper. This research contributed to identifying correlations between measured data and occupant satisfaction and identifying common IEQ defects and their sources to better communicate with facility managers and architects

    Indoor environmental quality evaluation in a hot and arid climate: a case study of a higher education office building

    No full text
    Indoor Environment Quality (IEQ) refers to the overall environmental quality within a building, especially as it relates to the health and comfort of the building’s occupants. It includes several factors such as lighting levels and indoor air quality (IAQ). As humans spend a significant amount of time indoors; particularly at the workplace for up to 12 hours a day, the IEQ of the office greatly affects one’s overall well-being, health with striking effects on productivity. As for IAQ, in severe cases, high levels of carbon dioxide (CO2), particulate matter (PM), and humidity may cause headache, allergy, and asthma. A higher education (HE) office building located in United Arab Emirates University (UAEU) campus has been taken as a case study. Situated in the UAE, this is characterized by an extremely hot-arid climate. The HE building has been monitored using a set of advanced sensor devices to record indoor environmental data such as the measurements of temperature, relative humidity, lux level, particulate matter 2.5/10(PM 2.5/ 10), carbon dioxide (CO2), and total volatile organic compounds (TVOCs). Results of this paper aim to use the onsite numerical assessment and future POE assessment to verify the building’s performance and discover where the operational gaps are. Better facility management strategies will be suggested to enhance the indoor environmental quality (IEQ) as well as more findings will be discussed in this paper

    Bio_Fabricated Levan Polymer from <i>Bacillus subtilis</i> MZ292983.1 with Antibacterial, Antibiofilm, and Burn Healing Properties

    No full text
    The biopolymer levan has sparked a lot of interest in commercial production and various industrial applications. In this study, a bacterial isolate with promising levan-producing ability was isolated from a soil sample obtained from Princess Nourah bint Abdulrahman University in Saudi Arabia. The isolate has been identified and submitted to GenBank as Bacillus subtilis MZ292983.1. The bacterial levan polymer was extracted using ethyl alcohol (75%) and CaCl2 (1%) and then characterized using several approaches, such as Fourier transform infrared spectrometry and nuclear magnetic resonance. The IR spectrum of the levan polymer showed characteristic peaks confirming characteristics of polysaccharides, including a broad stretching peak of OH around 3417 cm−1 and aliphatic CH stretching was observed as two peaks at 2943, and 2885 cm−1. In addition, the FTIR spectrum featured an absorption at 2121 cm−1, indicating the fingerprint of the ÎČ-glycosidic bond. Based on 1H and 13C NMR spectroscopy analysis, six unexchanged proton signals related to fructose as a forming monomer of levan were observed. Evaluation of levan’s antibacterial effect against two pathogenic bacteria, S. aureus (ATCC 33592) and E. coli (ATCC 25922), showed inhibition zones of 1 cm and 0.8 cm in diameter, respectively, with MICs of more than 256 ÎŒg mL−1 for both strains. Moreover, the antibiofilm property of the levan polymer was assessed and the results showed that the inhibition rate was positively proportional to the levan concentration, as the inhibition percentages were 50%, 29.4%, 29.4%, 26.5%, and 14.7% at concentrations of 2, 1, 0.5, 0.25, and 0.125 mg mL−1, respectively. Levan showed a significant role in burn healing properties since it accelerated the process of healing burn-induced areas in rats when compared with those either treated with normal saline or treated with the cream base only

    Bio_Fabricated Levan Polymer from Bacillus subtilis MZ292983.1 with Antibacterial, Antibiofilm, and Burn Healing Properties

    No full text
    The biopolymer levan has sparked a lot of interest in commercial production and various industrial applications. In this study, a bacterial isolate with promising levan-producing ability was isolated from a soil sample obtained from Princess Nourah bint Abdulrahman University in Saudi Arabia. The isolate has been identified and submitted to GenBank as Bacillus subtilis MZ292983.1. The bacterial levan polymer was extracted using ethyl alcohol (75%) and CaCl2 (1%) and then characterized using several approaches, such as Fourier transform infrared spectrometry and nuclear magnetic resonance. The IR spectrum of the levan polymer showed characteristic peaks confirming characteristics of polysaccharides, including a broad stretching peak of OH around 3417 cm&minus;1 and aliphatic CH stretching was observed as two peaks at 2943, and 2885 cm&minus;1. In addition, the FTIR spectrum featured an absorption at 2121 cm&minus;1, indicating the fingerprint of the &beta;-glycosidic bond. Based on 1H and 13C NMR spectroscopy analysis, six unexchanged proton signals related to fructose as a forming monomer of levan were observed. Evaluation of levan&rsquo;s antibacterial effect against two pathogenic bacteria, S. aureus (ATCC 33592) and E. coli (ATCC 25922), showed inhibition zones of 1 cm and 0.8 cm in diameter, respectively, with MICs of more than 256 &mu;g mL&minus;1 for both strains. Moreover, the antibiofilm property of the levan polymer was assessed and the results showed that the inhibition rate was positively proportional to the levan concentration, as the inhibition percentages were 50%, 29.4%, 29.4%, 26.5%, and 14.7% at concentrations of 2, 1, 0.5, 0.25, and 0.125 mg mL&minus;1, respectively. Levan showed a significant role in burn healing properties since it accelerated the process of healing burn-induced areas in rats when compared with those either treated with normal saline or treated with the cream base only

    Concerns with Male Infertility Induced by Exposure to Titanium Nanoparticles and the Supporting Impact of Pelargonium graveolens Essential Oil: Morphometric Records in Male-Wistar Rats

    No full text
    Background: Due to the increased use of titanium dioxide nanoparticles (TiO2 NPs), the risks of their reprotoxic effect arise. This study anticipated examining the potential protective effects of GEO (geranium essential oil) components screened via GC/MS analysis against the reprotoxic impacts of TiO2 NPs on male rats. Methods: Thirty-two adult male rats were randomly assigned to four groups: control, GEO (75 mg/kg bwt/orally/day/60 days), TiO2 NPs (100 ppm/rat/IP/day/60 days), and TiO2 NPs + GEO. After 60 days, hormonal assay, semen appraisal, lipid peroxidation, antioxidant enzymes, testis and prostate morphometry, and the steroidogenesis-related genes&rsquo; mRNA expressions were assessed. Results: The TEM and DLS results demonstrated that synthesized TiO2 NPs are spherical with minimal aggregations polydispersed and varying in size from 50 to 100 nm. TiO2 NPs IP injection-induced sperm abnormalities decreased the percent of motile sperms in the sperm count, reduced sex hormone levels, altered the testicular oxidant/antioxidant status and mRNA expression of steroid-related genes, and induced architectural alterations in testicular, epididymal, and prostate gland tissues. GEO significantly rescued the TiO2 NPs-altered spermiogram, sex hormones, and antioxidant capacity, restored the tissue architectures, and enhanced steroidogenesis-related gene mRNA expression. Conclusions: These findings may significantly contribute to developing combinatorial treatments for infertility associated with various environmental and industrial xenobiotic exposures
    corecore