259 research outputs found

    Znamenny scale – fait accompli?

    Get PDF
    The author addresses one of the most sensitive topics of Znamenny chant: its scale. He tries to restore the “burned bridges” between ideographic and staff-notation of the Chant as he redefines and essentially generalizes the concept of scale as such. The possibility to artificially construct ad hoc many scales sounding sometimes very similar to the scale suggested by the modern staff-notation is a serious argument to regard the “staff-notation based” deciphering from the 17th century (dvoeznamenniki) a pure game of chance. The constructed scales, presented in the paper, are different to “keyboard diatonica” and from one another and are never subject to the unified theorizing (unified nomenclature of degrees, etc). Critically commented is the practice to uncontrollably use the trivial pitch-symbols for deciphering, which ipso facto makes the probabilistic steps of unknown scales look as the ill-founded deviations from the diatonic scale steps, which are currently in use in the common musical education. This practice hinders the chance to acknowledge the right of the remote musical culture to rest on foundations that can be formulated both positively and explicitly, all the more so, as the usage of paleographic signs looks rather consistent. The resemblances and differences between musical cultures may be treated more liberally since no scale is seen a norm. The author is based on the writings of Russian musicologist and organologist Felix Raudonikas

    THE WAYS OF PREVENTING HIGH-SPEED SHIP COLLISIONS WITH OBSTACLES

    Get PDF
    This article discusses the method of preventing the high-speed ship collisions with obstacles and groundings. The solution of the problem is suggested through monitoring the water reservoir to prevent hitting the shoal and the artificial wave generation at the fore-deck of the vessel to a complete stop

    An amperometric biosensor based on laccase immobilized in polymer matrices for determining phenolic compounds

    Get PDF
    An amperometric enzyme electrode based on laccase for determining phenolic compounds is proposed. The following three types of polymer materials were used for enzyme immobilization on the surface of a glassy-carbon electrode: positively charged cetyl ethyl poly (ethyleneimine) (CEPEI) and negatively charged commercial Nafion and Eastman AQ 29D polymers. The advantages and disadvantages of each of the above polymers for enzyme immobilization are discussed. The detection limits of the model phenolic compounds hydroquinone and pyrocatechol in a buffer solution on laccase immobilization in a Nation membrane were 3.5 x 10(-8) and 5.0 x 10(-8) M, respectively, at a signal-to-noise ratio of 3. Electrodes with laccase immobilized in Nation and Eastman AQ 29D membranes exhibited the shortest response time. The operating stability and the stability in storage can be significantly improved by the additional incorporation of gelatin in the polymer matrices. Gelatin prevents enzyme inactivation as a result of enzyme modification by the free-radical oxidation products of phenolic compounds

    Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii

    Get PDF
    The degradation of the textile dye indigo with purified laccases from the fungi Trametes hirsuta (THL1 and THL2) and Sclerotium rolfsii (SRL1) was studied. All laccases were able to oxidize indigo yielding isatin (indole-2,3-dione), which was further decomposed to anthranilic acid (2-aminobenzoic acid). Based on the oxygen consumption rate of the laccases during indigo degradation, a potential mechanism for the oxidation of indigo involving the step-wise abstraction of four electrons from indigo by the enzyme was suggested. Comparing the effect of the known redox-mediators acetosyringone, 1-hydroxybenzotriazole (HOBT) and 4-hydroxybenzenesulfonic acid (PHBS) on laccase-catalyzed degradation of indigo, we found a maximum of about 30% increase in the oxidation rate of indigo with SRL1 and acetosyringone. The particle size of indigo agglomerates after laccase treatment was influenced by the origin of the laccase preparation and by the incubation time. Diameter distributions were found to have one maximum and compared to the indigo particle size distribution of the control, for all laccases, the indigo agglomerates seemed to have shifted to smaller diameters. Bleaching of fabrics by the laccases (based on K/S values) correlated with the release of indigo degradation products. (C) 2001 Elsevier Science BY. All rights reserved

    Voltammetric monitoring of laccase-catalysed mediated reactions

    Get PDF
    Six different compounds capable of mediating laccase-catalysed reactions have been tested by cyclic voltammetry. They exhibited quasi-reversible electrodic behaviour with formal redox potentials ranging from 150 to 800 mV (E-0t vs. SCE). The immersion of a laccase-coated glassy carbon electrode (GCE) in mediator solutions generated large cathodic catalytic currents easily recorded by cyclic voltammetry at low-potential scan rates. This current showed two well-defined pH profiles, which correlated with the variation of the mediator redox potentials at the pH range tested. The relevant effect of temperature on the activity of laccase has been assessed here. Likewise, it was shown that the cut-rent record varied with the substrate concentration. This trend fitted Michaelis-Menten kinetics, which allowed us to give an estimation of the affinity of the fungal laccase for the different mediators. (C) 2002 Elsevier Science B.V. All rights reserved

    An acid-stable laccase from sclerotium rolfsii with potential for wool dye decolourization

    Get PDF
    The plant pathogen basidiomycete S. rolfsii secretes two laccases (SRL1 and SRL2) with molecular weights of 55 and 86 kDa, respectively. Laccase production was shown to be inducible by the addition of 2,5-xylidine to the cultural media. After treatment with a combination of chitinase and -1,3-glucanase, two different laccases were isolated from the sclerotia depending on the stage of sclerotia development. The more prominent laccase, SRL1, was purified and found to decolourize the industrially important wool azo dye Diamond Black PV 200 without the addition of redox mediators. The enzyme (pI 5.2) was active in the acidic pH range, showing an optimal activity at pH 2.4, with ABTS as substrate. The optimum temperature for activity was determined to be 62 ◩C. Enzyme stability studies revealed that SRL1 was notably stable at 18 ◩C and pH 4.5, retaining almost full activity after a week. Oxidation of tyrosine was not detectable under the reaction conditions but the enzyme did oxidize a variety of the usual laccase substrates. SRL1 was strongly inhibited by sodium azide and fluoride. Dye solutions decolourized with the immobilized laccase were successfully used for redyeing.(undefined

    Stable floating air diffusion biocathode based on direct electron transfer reactions between carbon particles and high redox potential laccase

    No full text
    We report on the assembly and characterisation of a high potential, stable, mediator-less and cofactor free biocathode based on a fungal laccase (Lc), adsorbed on highly dispersed carbonaceous materials. First, the stability and activity of Trametes hirsuta Lc immobilised on different carbon particles were studied and compared to the solubilised enzyme. Based on the experimental results and a literature analysis, the carbonaceous material BM-4 was chosen to design efficient and stable biocatalysts for the production of a ‘floating’ air diffusion Lc-based biocathode. Voltammetric characteristics and operational stability of the biocathode were investigated. The current density of oxygen reduction at the motionless biocathode in a quiet, air saturated citrate buffer (100 mM, pH 4.5, 23 °C) reached values as high as 0.3 mA cm–2 already at 0.7 V versus NHE. The operational stability of the biocathode depended on the current density of the device. For example, at low current density (20 lA cm–2), the biocathode lost only 5× of its initial power after 1 month of continuous operation. However, when the device was polarised at 150 mV it lost more than 32× of its initial power in just 10 min. We also found that co-immobilisation of Lc and peroxidase on highly dispersed carbon materials could protect the biocatalyst from rapid inactivation by hydrogen peroxide produced during electrocatalytic reactions at high-current densities
    • 

    corecore