18 research outputs found

    Imaging New Zealand's Crustal Structure Using Ambient Seismic Noise Recordings from Permanent and Temporary Instruments

    No full text
    We use ambient seismic noise to image the crust and uppermost mantle, and to determine the spatiotemporal characteristics of the noise field itself, and examine the way in which those characteristics may influence imaging results. Surface wave information extracted from ambient seismic noise using cross-correlation methods significantly enhances our knowledge of the crustal and uppermost mantle shear-velocity structure of New Zealand. We assemble a large dataset of three-component broadband continuous seismic data from temporary and permanent seismic stations, increasing the achievable resolution of surface wave velocity maps in comparison to a previous study. Three-component data enables us to examine both Rayleigh and Love waves using noise cross-correlation functions. Employing a Monte Carlo inversion method, we invert Rayleigh and Love wave phase and group velocity dispersion curves separately for spatially averaged isotropic shear velocity models beneath the Northland Peninsula. The results yield first-order radial anisotropy estimates of 2% in the upper crust and up to 15% in the lower crust, and estimates of Moho depth and uppermost mantle velocity compatible with previous studies. We also construct a high-resolution, pseudo-3D image of the shear-velocity distribution in the crust and uppermost mantle beneath the central North Island using Rayleigh and Love waves. We document, for the first time, the lateral extent of low shear-velocity zones in the upper and mid-crust beneath the highly active Taupo Volcanic Zone, which have been reported previously based on spatially confined 1D shear-velocity profiles. Attributing these low shear-velocities to the presence of partial melt, we use an empirical relation to estimate an average percentage of partial melt of < 4:2% in the upper and middle crust. Analysis of the ambient seismic noise field in the North Island using plane wave beamforming and slant stacking indicates that higher mode Rayleigh waves can be detected, in addition to the fundamental mode. The azimuthal distributions of seismic noise sources inferred from beamforming are compatible with high near-coastal ocean wave heights in the period band of the secondary microseism (~7 s). Averaged over 130 days, the distribution of seismic noise sources is azimuthally homogeneous, indicating that the seismic noise field is well-suited to noise cross-correlation studies. This is underpinned by the good agreement of our results with those from previous studies. The effective homogeneity of the seismic noise field and the large dataset of noise cross-correlation functions we here compiled, provide the cornerstone for future studies of ambient seismic noise and crustal shear velocity structure in New Zealand

    Real-time characterization of large earthquakes using the predominant period derived from 1Hz GPS data

    Get PDF
    Earthquake early warning (EEW) systems’ performance is driven by the trade-off between the need for a rapid alert and the accuracy of each solution. A challenge for many EEW systems has been the magnitude saturation for large events (Mw>7) and the resulting underestimation of seismic moment magnitude. In this study, we test the performance of high-rate (1Hz) GPS, based on seven seismic events, to evaluate whether long-period ground motions can be measured well enough to infer reliably earthquake predominant periods. We show that high-rate GPS data allow the computation of a GPS-based predominant period (τg) to estimate lower bounds for the magnitude of earthquakes and distinguish between large (MW>7) and great (MW>8) events and thus extend the capability of EEW systems for larger events. It is also identified the impact of the different value of the smoothing factor α on the τg results and how the sampling rate and the computation process differentiates τg from the commonly used τp

    Automated Eruption Forecasting at Frequently Active Volcanoes Using Bayesian Networks Learned From Monitoring Data and Expert Elicitation: Application to Mt Ruapehu, Aotearoa, New Zealand

    Get PDF
    Volcano observatory best practice recommends using probabilistic methods to forecast eruptions to account for the complex natural processes leading up to an eruption and communicating the inherent uncertainties in appropriate ways. Bayesian networks (BNs) are an artificial intelligence technology to model complex systems with uncertainties. BNs consist of a graphical presentation of the system that is being modelled and robust statistics to describe the joint probability distribution of all variables. They have been applied successfully in many domains including risk assessment to support decision-making and modelling multiple data streams for eruption forecasting and volcanic hazard and risk assessment. However, they are not routinely or widely employed in volcano observatories yet. BNs provide a flexible framework to incorporate conceptual understanding of a volcano, learn from data when available and incorporate expert elicitation in the absence of data. Here we describe a method to build a BN model to support decision-making. The method is built on the process flow of risk management by the International Organization for Standardization. We have applied the method to develop a BN model to forecast the probability of eruption for Mt Ruapehu, Aotearoa New Zealand in collaboration with the New Zealand volcano monitoring group (VMG). Since 2014, the VMG has regularly estimated the probability of volcanic eruptions at Mt Ruapehu that impact beyond the crater rim. The BN model structure was built with expert elicitation based on the conceptual understanding of Mt Ruapehu and with a focus on making use of the long eruption catalogue and the long-term monitoring data. The model parameterisation was partly done by data learning, complemented by expert elicitation. The retrospective BN model forecasts agree well with the VMG elicitations. The BN model is now implemented as a software tool to automatically calculate daily forecast updates

    Earthquake early warning and operational earthquake forecasting as real-time hazard information to mitigate seismic risk at nuclear facilities

    Get PDF
    Based on our experience in the project REAKT, we present a methodological framework to evaluate the potential benefits and costs of using Earthquake Early Warning (EEW) and Operational Earthquake Forecasting (OEF) for real-time mitigation of seismic risk at nuclear facilities. We focus on evaluating the reliability, significance and usefulness of the aforementioned real-time risk-mitigation tools and on the communication of real-time earthquake information to end-users. We find that EEW and OEF have significant potential for the reduction of seismic risk at nuclear plants, although much scientific research and testing is still necessary to optimise their operation for these sensitive and highly-regulated facilities. While our test bed was Switzerland, the methodology presented here is of general interest to the community of EEW researchers and end-users and its scope is significantly beyond its specific application within REAKT

    The Virtual Seismologist in SeisComP3: A New Implementation Strategy for Earthquake Early Warning Algorithms

    Get PDF
    The feasibility of earthquake early warning (EEW) is now widely recognized. However, EEW systems that are in operation or under evaluation worldwide have significant variations and are usually operated independently of routine earthquake monitoring. We introduce a software that allows testing and evaluation of a well‐known EEW algorithm directly within a widely used earthquake monitoring software platform. In the long term, we envision this approach can lead to (1) an easier transition from prototype to production type EEW implementations, (2) a natural and seamless evolution from very fast EEW source parameter estimates with typically large uncertainties to more delayed but more precise estimates using more traditional analysis methods, and (3) the capability of seismic networks to evaluate the readiness of their network for EEW, and to implement EEW, without having to invest in and maintain separate, independent software systems. Using the Virtual Seismologist (VS), a popular EEW algorithm that has been tested in real time in California since 2008, we demonstrate how our approach can be realized within the widely used monitoring platform SeisComP3. Because this software suite is already in production at many seismic networks worldwide, we have been able to test the new VS implementation across a wide variety of tectonic settings and network infrastructures. Using mainly real‐time performance, we analyze over 3200 events with magnitudes between 2.0 and 6.8 and show that, for shallow crustal seismicity, 68% of the first VS magnitude estimates are within ±0.5 magnitude units of the final reported magnitude. We further demonstrate the very significant effect of data communication strategies on final alert times. Using a Monte Carlo simulation approach, we then model the best possible alert times for optimally configured EEW systems and show that, for events within the dense parts of each of the seven test networks, effective warnings could be issued for magnitudes as small as M 5.0

    Ambient seismic noise tomography of Canada and adjacent regions: Part I. Crustal structures

    Get PDF
    This paper presents the first continental-scale study of the crust and upper mantle shear velocity (V_s) structure of Canada and adjacent regions using ambient noise tomography. Continuous waveform data recorded between 2003 and 2009 with 788 broadband seismograph stations in Canada and adjacent regions were used in the analysis. The higher primary frequency band of the ambient noise provides better resolution of crustal structures than previous tomographic models based on earthquake waveforms. Prominent low velocity anomalies are observed at shallow depths (<20 km) beneath the Gulf of St. Lawrence in east Canada, the sedimentary basins of west Canada, and the Cordillera. In contrast, the Canadian Shield exhibits high crustal velocities. We characterize the crust-mantle transition in terms of not only its depth and velocity but also its sharpness, defined by its thickness and the amount of velocity increase. Considerable variations in the physical properties of the crust-mantle transition are observed across Canada. Positive correlations between the crustal thickness, Moho velocity, and the thickness of the transition are evident throughout most of the craton except near Hudson Bay where the uppermost mantle V_s is relatively low. Prominent vertical V_s gradients are observed in the midcrust beneath the Cordillera and beneath most of the Canadian Shield. The midcrust velocity contrast beneath the Cordillera may correspond to a detachment zone associated with high temperatures immediately beneath, whereas the large midcrust velocity gradient beneath the Canadian Shield probably represents an ancient rheological boundary between the upper and lower crust

    Feasibility study on earthquake early warning and operational earthquake forecasting for risk mitigation at nuclear power plants

    Get PDF
    International audienceWithin the framework of the EC-funded project REAKT (Strategies and Tools for Real Time Earthquake Risk Reduction, FP7, contract no. 282862, 2011-2014, www.reaktproject.eu), a task concerns feasibility study and initial implementation of Earthquake Early Warning (EEW) and timedependent seismic hazard analyses aimed at mitigating seismic risk at nuclear power plants (NPPs) in Switzerland. This study is jointly carried out by academic institutions (the Swiss Seismological Service at ETHZ and BRGM) and in cooperation with swissnuclear, the nuclear energy section of swisselectric, an umbrella organisation for the nuclear power plants in Switzerland, which provide about 40% of the electricity needs of the country. Briefly presented in this contribution are the main investigations carried out and results obtained throughout the development of this task, with special focus on: a) evaluating the performances of the selected EEW algorithm (the Virtual Seismologist, VS) in Switzerland and California, in terms of correct detections, false alerts, and missed events; b) embedding the VS algorithm into the earthquake monitoring software SeisComP3 (www.seiscomp3.org) routinely used by the Swiss Seismological Service for earthquake detections and locations; c) customising the User Display (a graphical interface originally developed at the California Institute of Technology (Caltech) during Phase II of the ShakeAlert project in California) for optimised use at Swiss NPPs; d) presenting synthetic time-dependent hazard scenarios for Switzerland and e) attempting to associate the above input data with potential mitigation actions and related cost and benefits for NPPs in Switzerland

    Earthquakes in Switzerland and surrounding regions during 2013

    Get PDF
    This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2013. During this period, 699 earthquakes and 208 quarry blasts were detected and located in the region under consideration. With a total of 18 events with local magnitudes ML ≥ 2.5, the seismic activity in the year 2013 was slightly below the average over the previous 38years. Most noteworthy were the two earthquake sequences of St. Gallen (SG) in July and Balzers (FL) in December. The former was induced by reservoir stimulation operations at the St. Gallen geothermal project. The maximum local magnitude in the sequence was 3.5, comparable in size with the ML 3.4 event induced by stimulation operations below Basel in 2006. The sequence of Balzers was associated with an ML 4.1 earthquake in the border region to Liechtenstein. More than 30 aftershocks with magnitudes ranging between ML −0.2 and ML 3.7 were detected in the month following the mainshock. The ML 3.5 St. Gallen and the ML 4.1 Balzers earthquakes were widely felt by the public but no reports on damages are known. The maximum intensity for both events was IV

    Earthquakes in Switzerland and surrounding regions during 2013

    Get PDF
    This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2013. During this period, 699 earthquakes and 208 quarry blasts were detected and located in the region under consideration. With a total of 18 events with local magnitudes ML ≥ 2.5, the seismic activity in the year 2013 was slightly below the average over the previous 38years. Most noteworthy were the two earthquake sequences of St. Gallen (SG) in July and Balzers (FL) in December. The former was induced by reservoir stimulation operations at the St. Gallen geothermal project. The maximum local magnitude in the sequence was 3.5, comparable in size with the ML 3.4 event induced by stimulation operations below Basel in 2006. The sequence of Balzers was associated with an ML 4.1 earthquake in the border region to Liechtenstein. More than 30 aftershocks with magnitudes ranging between ML −0.2 and ML 3.7 were detected in the month following the mainshock. The ML 3.5 St. Gallen and the ML 4.1 Balzers earthquakes were widely felt by the public but no reports on damages are known. The maximum intensity for both events was IV

    Imaging New Zealand's Crustal Structure Using Ambient Seismic Noise Recordings from Permanent and Temporary Instruments

    No full text
    We use ambient seismic noise to image the crust and uppermost mantle, and to determine the spatiotemporal characteristics of the noise field itself, and examine the way in which those characteristics may influence imaging results. Surface wave information extracted from ambient seismic noise using cross-correlation methods significantly enhances our knowledge of the crustal and uppermost mantle shear-velocity structure of New Zealand. We assemble a large dataset of three-component broadband continuous seismic data from temporary and permanent seismic stations, increasing the achievable resolution of surface wave velocity maps in comparison to a previous study. Three-component data enables us to examine both Rayleigh and Love waves using noise cross-correlation functions. Employing a Monte Carlo inversion method, we invert Rayleigh and Love wave phase and group velocity dispersion curves separately for spatially averaged isotropic shear velocity models beneath the Northland Peninsula. The results yield first-order radial anisotropy estimates of 2% in the upper crust and up to 15% in the lower crust, and estimates of Moho depth and uppermost mantle velocity compatible with previous studies. We also construct a high-resolution, pseudo-3D image of the shear-velocity distribution in the crust and uppermost mantle beneath the central North Island using Rayleigh and Love waves. We document, for the first time, the lateral extent of low shear-velocity zones in the upper and mid-crust beneath the highly active Taupo Volcanic Zone, which have been reported previously based on spatially confined 1D shear-velocity profiles. Attributing these low shear-velocities to the presence of partial melt, we use an empirical relation to estimate an average percentage of partial melt of < 4:2% in the upper and middle crust. Analysis of the ambient seismic noise field in the North Island using plane wave beamforming and slant stacking indicates that higher mode Rayleigh waves can be detected, in addition to the fundamental mode. The azimuthal distributions of seismic noise sources inferred from beamforming are compatible with high near-coastal ocean wave heights in the period band of the secondary microseism (~7 s). Averaged over 130 days, the distribution of seismic noise sources is azimuthally homogeneous, indicating that the seismic noise field is well-suited to noise cross-correlation studies. This is underpinned by the good agreement of our results with those from previous studies. The effective homogeneity of the seismic noise field and the large dataset of noise cross-correlation functions we here compiled, provide the cornerstone for future studies of ambient seismic noise and crustal shear velocity structure in New Zealand.</p
    corecore